IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i11p15243-15261d59023.html
   My bibliography  Save this article

Green Transport Balanced Scorecard Model with Analytic Network Process Support

Author

Listed:
  • David Staš

    (Department of Logistics and Quality Management, ŠKODA AUTO University, Na Karmeli 1457, Mladá Boleslav 293 01, Czech Republic
    These authors contributed equally to this work.)

  • Radim Lenort

    (Department of Logistics and Quality Management, ŠKODA AUTO University, Na Karmeli 1457, Mladá Boleslav 293 01, Czech Republic
    These authors contributed equally to this work.)

  • Pavel Wicher

    (Department of Logistics and Quality Management, ŠKODA AUTO University, Na Karmeli 1457, Mladá Boleslav 293 01, Czech Republic
    These authors contributed equally to this work.)

  • David Holman

    (Department of Logistics and Quality Management, ŠKODA AUTO University, Na Karmeli 1457, Mladá Boleslav 293 01, Czech Republic
    These authors contributed equally to this work.)

Abstract

In recent decades, the performance of economic and non-economic activities has required them to be friendly with the environment. Transport is one of the areas having considerable potential within the scope. The main assumption to achieve ambitious green goals is an effective green transport evaluation system. However, these systems are researched from the industrial company and supply chain perspective only sporadically. The aim of the paper is to design a conceptual framework for creating the Green Transport (GT) Balanced Scorecard (BSC) models from the viewpoint of industrial companies and supply chains using an appropriate multi-criteria decision making method. The models should allow green transport performance evaluation and support of an effective implementation of green transport strategies. Since performance measures used in Balanced Scorecard models are interdependent, the Analytic Network Process (ANP) was used as the appropriate multi-criteria decision making method. The verification of the designed conceptual framework was performed on a real supply chain of the European automotive industry.

Suggested Citation

  • David Staš & Radim Lenort & Pavel Wicher & David Holman, 2015. "Green Transport Balanced Scorecard Model with Analytic Network Process Support," Sustainability, MDPI, vol. 7(11), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:11:p:15243-15261:d:59023
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/11/15243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/11/15243/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard Hu, 2015. "Sustainable Development Strategy for the Global City: A Case Study of Sydney," Sustainability, MDPI, vol. 7(4), pages 1-15, April.
    2. Thomas L. Saaty & Luis G. Vargas, 2013. "The Analytic Network Process," International Series in Operations Research & Management Science, in: Decision Making with the Analytic Network Process, edition 2, chapter 0, pages 1-40, Springer.
    3. Thomas L. Saaty & Luis G. Vargas, 2013. "Decision Making with the Analytic Network Process," International Series in Operations Research and Management Science, Springer, edition 2, number 978-1-4614-7279-7, September.
    4. Jeon, Christy Mihyeon & Amekudzi, Adjo A. & Guensler, Randall L., 2013. "Sustainability assessment at the transportation planning level: Performance measures and indexes," Transport Policy, Elsevier, vol. 25(C), pages 10-21.
    5. Dorina Pojani & Dominic Stead, 2015. "Sustainable Urban Transport in the Developing World: Beyond Megacities," Sustainability, MDPI, vol. 7(6), pages 1-22, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Maryam Masoumi & Nima Kazemi & Salwa Hanim Abdul-Rashid, 2019. "Sustainable Supply Chain Management in the Automotive Industry: A Process-Oriented Review," Sustainability, MDPI, vol. 11(14), pages 1-30, July.
    2. Dinara SATYBALDIYEVA & Gulmira MUKHANOVA & Kassym YELEMESSOV & Dinara BASKANBAYEVA & Oraz SATYBALDIYEV, 2021. "One Of The Ways To Identify The Weights Of Indicators Of The Fuzzy Analytical Hierarchy Process For Determining Bsc Of An Airline Company," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(4), pages 83-94, December.
    3. Julia Freis & Philipp Vohlidka & Willibald A. Günthner, 2016. "Low-Carbon Warehousing: Examining Impacts of Building and Intra-Logistics Design Options on Energy Demand and the CO 2 Emissions of Logistics Centers," Sustainability, MDPI, vol. 8(5), pages 1-36, May.
    4. Chih-Chao Chung & Li-Chung Chao & Chih-Hong Chen & Shi-Jer Lou, 2016. "A Balanced Scorecard of Sustainable Management in the Taiwanese Bicycle Industry: Development of Performance Indicators and Importance Analysis," Sustainability, MDPI, vol. 8(6), pages 1-21, May.
    5. Matthias Klumpp, 2016. "To Green or Not to Green: A Political, Economic and Social Analysis for the Past Failure of Green Logistics," Sustainability, MDPI, vol. 8(5), pages 1-22, May.
    6. Elena Lascu & Irina Severin & Florina Daniela Lascu & Razvan Adrian Gudana & Gabriela Nalbitoru & Nicoleta Daniela Ignat, 2021. "Framework on Performance Management in Automotive Industry: A Case Study," JRFM, MDPI, vol. 14(10), pages 1-20, October.
    7. Florin Stîngă & Irina Severin & Ioana Alina Mitrache & Elena Lascu, 2020. "Redesign of the Curing Area of the Tire Manufacturing Process," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    8. Maria Persdotter Isaksson & Hana Hulthén & Helena Forslund, 2019. "Environmentally Sustainable Logistics Performance Management Process Integration between Buyers and 3PLs," Sustainability, MDPI, vol. 11(11), pages 1-19, May.
    9. Gang Du & Chuanwang Sun & Jinxian Weng, 2016. "Liner Shipping Fleet Deployment with Sustainable Collaborative Transportation," Sustainability, MDPI, vol. 8(2), pages 1-15, February.
    10. Aleksander Banasik & Jacqueline M. Bloemhof-Ruwaard & Argyris Kanellopoulos & G. D. H. Claassen & Jack G. A. J. Vorst, 2018. "Multi-criteria decision making approaches for green supply chains: a review," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 366-396, September.
    11. Kumar, Aalok & Anbanandam, Ramesh, 2022. "Assessment of environmental and social sustainability performance of the freight transportation industry: An index-based approach," Transport Policy, Elsevier, vol. 124(C), pages 43-60.
    12. João Nuno Morais Lopes & Luís Farinha, 2018. "Measuring the Performance of Innovation and Entrepreneurship Networks," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 9(2), pages 402-423, June.
    13. Hongyou Lu & Yunchan Zhu & Yu Qi & Jinliang Yu, 2018. "Do Urban Subway Openings Reduce PM 2.5 Concentrations? Evidence from China," Sustainability, MDPI, vol. 10(11), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clara Moreira Senne & Josiane Palma Lima & Fábio Favaretto, 2021. "An Index for the Sustainability of Integrated Urban Transport and Logistics: The Case Study of São Paulo," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    2. Rachele Corticelli & Margherita Pazzini & Cecilia Mazzoli & Claudio Lantieri & Annarita Ferrante & Valeria Vignali, 2022. "Urban Regeneration and Soft Mobility: The Case Study of the Rimini Canal Port in Italy," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    3. Mohammed Ifkirne & Houssam El Bouhi & Siham Acharki & Quoc Bao Pham & Abdelouahed Farah & Nguyen Thi Thuy Linh, 2022. "Multi-Criteria GIS-Based Analysis for Mapping Suitable Sites for Onshore Wind Farms in Southeast France," Land, MDPI, vol. 11(10), pages 1-26, October.
    4. Enrique Mu & Howard Stern, 2018. "A Contingent/Assimilation Framework for Public Interorganizational Systems Decisions: Should the City of Pittsburgh and Allegheny County Consolidate Information Technology Services?," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1611-1658, November.
    5. Toly Chen, 2021. "A diversified AHP-tree approach for multiple-criteria supplier selection," Computational Management Science, Springer, vol. 18(4), pages 431-453, October.
    6. Hocine, Amine & Kouaissah, Noureddine, 2020. "XOR analytic hierarchy process and its application in the renewable energy sector," Omega, Elsevier, vol. 97(C).
    7. Abrahamsen, Eirik Bjorheim & Milazzo, Maria Francesca & Selvik, Jon T. & Asche, Frank & Abrahamsen, HÃ¥kon Bjorheim, 2020. "Prioritising investments in safety measures in the chemical industry by using the Analytic Hierarchy Process," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    8. Paweł Ziemba, 2019. "Inter-Criteria Dependencies-Based Decision Support in the Sustainable wind Energy Management," Energies, MDPI, vol. 12(4), pages 1-29, February.
    9. Ferry Syarifuddin, 2022. "Towards Green Economy Transformation Through Islamic Green Financing: Managing Risk And Fostering Sustainable Growth For The Real And Financial Sectors," Working Papers WP/05/2022, Bank Indonesia.
    10. Ya Wu & Chenyang Shuai & Liu Wu & Liyin Shen & Jianzhong Yan & Liudan Jiao & Shiju Liao, 2020. "A new experience mining approach for improving low carbon city development," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 922-934, July.
    11. Mokarram, Marzieh & Mirsoleimani, Abbas, 2018. "Using Fuzzy-AHP and order weight average (OWA) methods for land suitability determination for citrus cultivation in ArcGIS (Case study: Fars province, Iran)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 506-518.
    12. Guangying Jin, 2022. "Designer Selection for Complex Engineering System Design Projects Considering the Disciplines Demanded," Sustainability, MDPI, vol. 14(23), pages 1-25, December.
    13. Qingfu Li & Chuangshi Fan, 2022. "Evaluation of Hydraulic-Tunnel-Lining Durability Based on ANP and Cloud-Model-Improved Matter–Element Theory," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    14. Alok K. Pandey & R. Krishankumar & Dragan Pamucar & Fausto Cavallaro & Abbas Mardani & Samarjit Kar & K. S. Ravichandran, 2021. "A Bibliometric Review on Decision Approaches for Clean Energy Systems under Uncertainty," Energies, MDPI, vol. 14(20), pages 1-27, October.
    15. Joram Schito & Joshu Jullier & Martin Raubal, 2019. "A framework for integrating stakeholder preferences when deciding on power transmission line corridors," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 159-195, November.
    16. Melani, Arthur Henrique Andrade & Murad, Carlos Alberto & Caminada Netto, Adherbal & Souza, Gilberto Francisco Martha de & Nabeta, Silvio Ikuyo, 2018. "Criticality-based maintenance of a coal-fired power plant," Energy, Elsevier, vol. 147(C), pages 767-781.
    17. Mansour Alyahya & Meqbel Aliedan & Gomaa Agag & Ziad H. Abdelmoety, 2023. "Understanding the Relationship between Big Data Analytics Capabilities and Sustainable Performance: The Role of Strategic Agility and Firm Creativity," Sustainability, MDPI, vol. 15(9), pages 1-17, May.
    18. Yasmin, Mariam & Tatoglu, Ekrem & Kilic, Huseyin Selcuk & Zaim, Selim & Delen, Dursun, 2020. "Big data analytics capabilities and firm performance: An integrated MCDM approach," Journal of Business Research, Elsevier, vol. 114(C), pages 1-15.
    19. Abhishek Srivastava & Deepti Mehrotra & P. K. Kapur & Anu G. Aggarwal, 2020. "Analytical evaluation of agile success factors influencing quality in software industry," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 247-257, July.
    20. Diogo Rodrigues & Radu Godina & Pedro Espadinha da Cruz, 2021. "Key Performance Indicators Selection through an Analytic Network Process Model for Tooling and Die Industry," Sustainability, MDPI, vol. 13(24), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:11:p:15243-15261:d:59023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.