IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i9p3988-d1645069.html
   My bibliography  Save this article

Electrode Materials Comparison for Hydrogen Production from Wastewater Electrolysis of Spiked Secondary Effluent

Author

Listed:
  • Giorgio Antonini

    (Department of Electrical & Computer Engineering, Western University, London, ON N6A 5B9, Canada)

  • Javier Ordonez-Loza

    (Department of Chemical & Biochemical Engineering, Western University, London, ON N6A 5B9, Canada)

  • Jithin Mathew

    (Department of Chemical & Biochemical Engineering, Western University, London, ON N6A 5B9, Canada)

  • Joshua Cullen

    (Department of Chemical & Biochemical Engineering, Western University, London, ON N6A 5B9, Canada)

  • Christopher Muller

    (Brown and Caldwell, Walnut Creek, CA 94596, USA)

  • Ahmed Al-Omari

    (Brown and Caldwell, Walnut Creek, CA 94596, USA)

  • Katherine Bell

    (Brown and Caldwell, Walnut Creek, CA 94596, USA)

  • Domenico Santoro

    (Department of Chemical & Biochemical Engineering, Western University, London, ON N6A 5B9, Canada)

  • Joshua M. Pearce

    (Department of Electrical & Computer Engineering, Western University, London, ON N6A 5B9, Canada
    Ivey Business School, Western University, London, ON N6G 0N1, Canada)

Abstract

Electrochemical methods show promise for wastewater treatment by removing pollutants, recovering nutrients, and generating hydrogen. To scale this technology, durable and affordable electrode materials are needed. This study evaluates aluminum 6061-T6, titanium grade II, ductile iron, and magnesium to understand their performance in promoting precipitation, gas production, and treating wastewater under several conditions. Electrodes were tested with ammonia-, magnesium-, and phosphate-spiked wastewater samples with induced precipitation at concentrations of 0.033 mol/L and 0.0033 mol/L; the liquid, gas, and precipitation phases were characterized. The results showed up to 35% reduction in ammonia, total phosphate recovery, and up to 70% reduction in magnesium. The cell generates hydrogen with purity levels of 95.6%, 96.1%, 87.9%, and 93.5% when utilizing iron, aluminum, titanium, and magnesium electrodes, respectively. The analyses of precipitants showed formation of vivianite crystals from iron, struvite precipitation from magnesium, and berlinite from aluminum. Overall, these results hold substantial promise for hydrogen generation from wastewater and potential for nutrient recovery and treatment.

Suggested Citation

  • Giorgio Antonini & Javier Ordonez-Loza & Jithin Mathew & Joshua Cullen & Christopher Muller & Ahmed Al-Omari & Katherine Bell & Domenico Santoro & Joshua M. Pearce, 2025. "Electrode Materials Comparison for Hydrogen Production from Wastewater Electrolysis of Spiked Secondary Effluent," Sustainability, MDPI, vol. 17(9), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:3988-:d:1645069
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/9/3988/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/9/3988/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying, Zhi & Geng, Zhen & Zheng, Xiaoyuan & Dou, Binlin & Cui, Guomin, 2022. "Improving water electrolysis assisted by anodic biochar oxidation for clean hydrogen production," Energy, Elsevier, vol. 238(PB).
    2. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Onwuemezie, Linus & Gohari Darabkhani, Hamidreza, 2024. "Oxy-hydrogen, solar and wind assisted hydrogen (H2) recovery from municipal plastic waste (MPW) and saltwater electrolysis for better environmental systems and ocean cleanup," Energy, Elsevier, vol. 301(C).
    4. Burton, N.A. & Grant, J.C., 2025. "Increasing the efficiency of water electrolysis with the application of pulsing electric fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    5. Yang, Jingze & Chi, Hetian & Cheng, Mohan & Dong, Mingqi & Li, Siwu & Yao, Hong, 2023. "Performance analysis of hydrogen supply using curtailed power from a solar-wind-storage power system," Renewable Energy, Elsevier, vol. 212(C), pages 1005-1019.
    6. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. David Borge-Diez & Enrique Rosales-Asensio & Emin Açıkkalp & Daniel Alonso-Martínez, 2023. "Analysis of Power to Gas Technologies for Energy Intensive Industries in European Union," Energies, MDPI, vol. 16(1), pages 1-22, January.
    8. Hao Guo & Hyeon-Jung Kim & Sang-Young Kim, 2022. "Research on Hydrogen Production by Water Electrolysis Using a Rotating Magnetic Field," Energies, MDPI, vol. 16(1), pages 1-11, December.
    9. Giosuè Giacoppo & Stefano Trocino & Carmelo Lo Vecchio & Vincenzo Baglio & María I. Díez-García & Antonino Salvatore Aricò & Orazio Barbera, 2023. "Numerical 3D Model of a Novel Photoelectrolysis Tandem Cell with Solid Electrolyte for Green Hydrogen Production," Energies, MDPI, vol. 16(4), pages 1-12, February.
    10. Zubi, Ghassan & Kuhn, Maximilian & Makridis, Sofoklis & Coutinho, Savio & Dorasamy, Stanley, 2025. "Aviation sector decarbonization within the hydrogen economy – A UAE case study," Energy Policy, Elsevier, vol. 198(C).
    11. Mustafa Jaradat & Sondos Almashaileh & Codruta Bendea & Adel Juaidi & Gabriel Bendea & Tudor Bungau, 2024. "Green Hydrogen in Focus: A Review of Production Technologies, Policy Impact, and Market Developments," Energies, MDPI, vol. 17(16), pages 1-27, August.
    12. Ying, Zhi & Du, Yueyue & Gu, Xufei & Yu, Xiaosha & Zheng, Xiaoyuan & Dou, Binlin & Cui, Guomin, 2024. "Biochar-assisted water electrolysis for energy-saving hydrogen production: Evolution of corn straw-based biochar structure and its enhanced effect on Cr(VI) removal," Energy, Elsevier, vol. 305(C).
    13. César Berna-Escriche & Carlos Vargas-Salgado & David Alfonso-Solar & Alberto Escrivá-Castells, 2022. "Hydrogen Production from Surplus Electricity Generated by an Autonomous Renewable System: Scenario 2040 on Grand Canary Island, Spain," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    14. Bhandari, Ramchandra, 2022. "Green hydrogen production potential in West Africa – Case of Niger," Renewable Energy, Elsevier, vol. 196(C), pages 800-811.
    15. Fengyuan Yan & Xiaolong Han & Qianwei Cheng & Yamin Yan & Qi Liao & Yongtu Liang, 2022. "Scenario-Based Comparative Analysis for Coupling Electricity and Hydrogen Storage in Clean Oilfield Energy Supply System," Energies, MDPI, vol. 15(6), pages 1-28, March.
    16. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    17. Yan, Yamin & Wang, Yumeng & Yan, Jie & Zhang, Haoran & Shang, Wenlong, 2024. "Wind electricity‑hydrogen-natural gas coupling: An integrated optimization approach for enhancing wind energy accommodation and carbon reduction," Applied Energy, Elsevier, vol. 369(C).
    18. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    19. Razmjoo, Armin & Mirjalili, Seyedali & Aliehyaei, Mehdi & Østergaard, Poul Alberg & Ahmadi, Abolfazl & Majidi Nezhad, Meysam, 2022. "Development of smart energy systems for communities: technologies, policies and applications," Energy, Elsevier, vol. 248(C).
    20. Shi, Jihao & Zhang, Xinqi & Zhang, Haoran & Wang, Qiliang & Yan, Jinyue & Xiao, Linda, 2024. "Automated detection and diagnosis of leak fault considering volatility by graph deep probability learning," Applied Energy, Elsevier, vol. 361(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:3988-:d:1645069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.