IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i9p3794-d1640431.html
   My bibliography  Save this article

Computational Ergo-Design for a Real-Time Baggage Handling System in an Airport

Author

Listed:
  • Ouzna Oukacha

    (IT Laboratory, ECAM Louis de Broglie, 35000 Rennes, France)

  • Alain-Jérôme Fougères

    (IT Laboratory, ECAM Louis de Broglie, 35000 Rennes, France)

  • Moïse Djoko-Kouam

    (IT Laboratory, ECAM Louis de Broglie, 35000 Rennes, France
    IETR, UMR CNRS 6164, CentraleSupélec, 35000 Rennes, France)

  • Egon Ostrosi

    (ELLIADD-ERCOS, Université de Technologie de Belfort Montbéliard (UTBM), EA4661, 90010 Belfort, France)

Abstract

Despite the growing importance of human-centered design and ergonomics in various fields, a significant gap exists in applying these principles to robotic systems in airport environments. This paper focuses on a real-time baggage handling monitoring system by proposing a computational ergo-design approach. It presents the optimal system architecture for real-time baggage handling. The proposed architecture, called ARTEMIS (ARchitecture for real-TimE baggage handling and MonitorIng System), is designed for real-time baggage handling and monitoring. The circuit modeling is carried out using a directed graph. Five strategies are simulated to test their effectiveness and evaluate their performance within the system. A simulation that generates key indicators enables preliminary visualization and analysis of AGV behavior through predefined scenarios. These results are presented through an intuitive and ergonomic user interface, designed with a focus on user–computer interaction as a problem-solving process centered on the user’s experience. The results show that, if the goal is to balance energy efficiency with effective baggage handling, the Mixed Advance/Delay Strategy appears to be the best overall choice, as it optimizes both energy consumption and baggage handling while maintaining relatively low waiting times. However, if minimizing queue time and maximizing baggage collection are the highest priorities (with less emphasis on energy efficiency), the Turnstile Strategy remains a solid option. In addition, the simulations show that the operator plays a central role in minimizing delays and ensuring the smooth operation of the system. Both local and global system failures depend heavily on the operator’s response time, decision-making, and overall efficiency. Therefore, operator efficiency and a well-designed support system are critical to maintaining a smooth and effective baggage handling process.

Suggested Citation

  • Ouzna Oukacha & Alain-Jérôme Fougères & Moïse Djoko-Kouam & Egon Ostrosi, 2025. "Computational Ergo-Design for a Real-Time Baggage Handling System in an Airport," Sustainability, MDPI, vol. 17(9), pages 1-27, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:3794-:d:1640431
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/9/3794/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/9/3794/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sergio Ortega Alba & Mario Manana, 2016. "Energy Research in Airports: A Review," Energies, MDPI, vol. 9(5), pages 1-19, May.
    2. Agnieszka A. Tubis & Honorata Poturaj, 2022. "Risk Related to AGV Systems—Open-Access Literature Review," Energies, MDPI, vol. 15(23), pages 1-23, November.
    3. Sergio Ortega Alba & Mario Manana, 2017. "Characterization and Analysis of Energy Demand Patterns in Airports," Energies, MDPI, vol. 10(1), pages 1-35, January.
    4. Wu, Xuepei & Xie, Lihua, 2017. "On load balancing strategies for baggage screening at airports," Journal of Air Transport Management, Elsevier, vol. 62(C), pages 82-89.
    5. Chiuhsiang Joe Lin & Tariku Tamiru Belis & Tsai Chi Kuo, 2019. "Ergonomics-Based Factors or Criteria for the Evaluation of Sustainable Product Manufacturing," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
    6. Enrico Mancinelli & Francesco Canestrari & Andrea Graziani & Umberto Rizza & Giorgio Passerini, 2021. "Sustainable Performances of Small to Medium-Sized Airports in the Adriatic Region," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Glenn Baxter & Panarat Srisaeng & Graham Wild, 2018. "An Assessment of Airport Sustainability, Part 2—Energy Management at Copenhagen Airport," Resources, MDPI, vol. 7(2), pages 1-27, May.
    2. Cuadra, L. & Ocampo-Estrella, I. & Alexandre, E. & Salcedo-Sanz, S., 2019. "A study on the impact of easements in the deployment of wind farms near airport facilities," Renewable Energy, Elsevier, vol. 135(C), pages 566-588.
    3. Zoutendijk, M. & Mitici, M., 2024. "Fleet scheduling for electric towing of aircraft under limited airport energy capacity," Energy, Elsevier, vol. 294(C).
    4. Ahmed Eid & May Salah & Mahmoud Barakat & Matevz Obrecht, 2022. "Airport Sustainability Awareness: A Theoretical Framework," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    5. Enrico Mancinelli & Francesco Canestrari & Andrea Graziani & Umberto Rizza & Giorgio Passerini, 2021. "Sustainable Performances of Small to Medium-Sized Airports in the Adriatic Region," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    6. Liu, Xiaochen & Zhang, Tao & Liu, Xiaohua & Li, Lingshan & Lin, Lin & Jiang, Yi, 2021. "Energy saving potential for space heating in Chinese airport terminals: The impact of air infiltration," Energy, Elsevier, vol. 215(PB).
    7. Xu, Ruoyu & Liu, Xiaochen & Liu, Xiaohua & Zhang, Tao, 2024. "Quantifying the energy flexibility potential of a centralized air-conditioning system: A field test study of hub airports," Energy, Elsevier, vol. 298(C).
    8. Oriana Helena Negulescu & Anca Draghici & Gabriela Fistis, 2022. "A Proposed Approach to Monitor and Control Sustainable Development Strategy Implementation," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
    9. Artur Kierzkowski & Tomasz Kisiel, 2021. "Simulation Model for the Estimation of Energy Consumption of the Baggage Handling System in the Landside Area of the Airport," Energies, MDPI, vol. 15(1), pages 1-11, December.
    10. Sergio Ortega Alba & Mario Manana, 2017. "Characterization and Analysis of Energy Demand Patterns in Airports," Energies, MDPI, vol. 10(1), pages 1-35, January.
    11. Abdellah Menou & Risto Lahdelma & Pekka Salminen, 2022. "Multicriteria Decision Aiding for Planning Renewable Power Production at Moroccan Airports," Energies, MDPI, vol. 15(14), pages 1-20, July.
    12. Lu, Yanyu & Dong, Jiankai & Liu, Jing, 2020. "Zonal modelling for thermal and energy performance of large space buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Ricardo Jorge Raimundo & Maria Emilia Baltazar & Sandra P. Cruz, 2023. "Sustainability in the Airports Ecosystem: A Literature Review," Sustainability, MDPI, vol. 15(16), pages 1-18, August.
    14. Víctor Fernando Gómez Comendador & Rosa María Arnaldo Valdés & Bernard Lisker, 2019. "A Holistic Approach to the Environmental Certification of Green Airports," Sustainability, MDPI, vol. 11(15), pages 1-38, July.
    15. Artur Kierzkowski & Tomasz Kisiel & Piotr Uchroński, 2021. "Simulation Model of Airport Security Lanes with Power Consumption Estimation," Energies, MDPI, vol. 14(20), pages 1-11, October.
    16. Carmela De Vivo & Marta Ellena & Vincenzo Capozzi & Giorgio Budillon & Paola Mercogliano, 2022. "Risk assessment framework for Mediterranean airports: a focus on extreme temperatures and precipitations and sea level rise," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 547-566, March.
    17. Chiuhsiang Joe Lin & Tariku Tamiru Belis & Dino Caesaron & Bernard C. Jiang & Tsai Chi Kuo, 2020. "Development of Sustainability Indicators for Employee-Activity Based Production Process Using Fuzzy Delphi Method," Sustainability, MDPI, vol. 12(16), pages 1-31, August.
    18. Amjad, Asim & Ikramullah Butt, Shahid & Agha, Mujtaba Hassan & Ahmad, Ayyaz & Zhang, Faping & Ahmad, Shamraiz, 2023. "Integrating Ergonomics and sustainability: A framework with LDA methodology and implementation roadmap," Technology in Society, Elsevier, vol. 75(C).
    19. Marqusee, Jeffrey & Ericson, Sean & Jenket, Don, 2021. "Impact of emergency diesel generator reliability on microgrids and building-tied systems," Applied Energy, Elsevier, vol. 285(C).
    20. Ciprian Cristea & Maria Cristea, 2021. "KPIs for Operational Performance Assessment in Flexible Packaging Industry," Sustainability, MDPI, vol. 13(6), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:3794-:d:1640431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.