IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i7p3233-d1628393.html
   My bibliography  Save this article

Pathway Simulation and Evaluation of Carbon Neutrality in the Sichuan-Chongqing Region Based on the LEAP Model

Author

Listed:
  • Xiaona Xie

    (School of Automation, Chengdu University of Information Technology, Chengdu 610225, China)

  • Youwei Li

    (School of Automation, Chengdu University of Information Technology, Chengdu 610225, China)

  • Han Zhang

    (Power System Security and Operation Key Laboratory of Sichuan Province, State Grid Sichuan Electric Power Research Institute, Chengdu 610041, China
    Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 644000, China)

  • Zhengwei Chang

    (Power System Security and Operation Key Laboratory of Sichuan Province, State Grid Sichuan Electric Power Research Institute, Chengdu 610041, China
    Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 644000, China)

  • Yu Zhan

    (College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China)

Abstract

Facing the intensifying global climate change pressures and China’s strategic commitment to carbon peaking and carbon neutrality, this study focuses on the multiple challenges faced by the Sichuan-Chongqing region, the economic core of southwest China, in optimizing its energy structure, controlling carbon emissions, and exploring sustainable development pathways. The study uses the LEAP (Long-range Energy Alternatives Planning) model to simulate energy demand and carbon emission trends under different policies and innovative technologies by constructing various scenarios. By conducting a comparative analysis of the LEAP model’s projection results under four scenarios (baseline scenario, alleviative scenario, low-carbon scenario, and high-efficiency low-carbon scenario), this study quantifies the energy demand and carbon emission pathways in the Sichuan-Chongqing region. The results show that optimizing the energy structure and improving energy efficiency are key to achieving carbon neutrality in the Sichuan-Chongqing region. Under the high-efficiency low-carbon scenario, the region is expected to reach peak energy consumption by 2050 and achieve a significant reduction in carbon emissions by 2060, with emissions dropping to 58.1% of the total emissions in 2050 and falling below 25% of the base year’s emissions. The industry sector is expected to account for 77.6% of total emissions. This study highlights the positive impact of widespread clean energy adoption on carbon reduction and demonstrates the importance of industrial restructuring and low-carbon technological innovation, among other green technologies, in promoting economic and environmental sustainability. Furthermore, by quantitatively analyzing carbon emission pathways under different scenarios, the study provides quantitative support and policy references for Sichuan-Chongqing and other regions to implement more scientific emission reduction measures and carbon neutrality pathway planning. The findings contribute to advancing regional collaborative governance, enhancing the scientific rigor of policy implementation, and fostering global climate governance cooperation, ultimately contributing to the coordinated and sustainable development of the ecological environment, economy, and society, embodying the “Sichuan-Chongqing efforts”.

Suggested Citation

  • Xiaona Xie & Youwei Li & Han Zhang & Zhengwei Chang & Yu Zhan, 2025. "Pathway Simulation and Evaluation of Carbon Neutrality in the Sichuan-Chongqing Region Based on the LEAP Model," Sustainability, MDPI, vol. 17(7), pages 1-23, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:3233-:d:1628393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/7/3233/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/7/3233/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luyi Qiu & Kunying Niu & Wei He & Yaqi Hu, 2023. "Two Contribution Paths of Carbon Neutrality: Terrestrial Ecosystem Carbon Sinks and Anthropogenic Carbon Emission Reduction—A Case of Chongqing, China," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    2. Aljoša Slameršak & Giorgos Kallis & Daniel W. O’Neill, 2022. "Energy requirements and carbon emissions for a low-carbon energy transition," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Elzen, Michel den & Fekete, Hanna & Höhne, Niklas & Admiraal, Annemiek & Forsell, Nicklas & Hof, Andries F. & Olivier, Jos G.J. & Roelfsema, Mark & van Soest, Heleen, 2016. "Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak before 2030?," Energy Policy, Elsevier, vol. 89(C), pages 224-236.
    4. Hanyue Fang & Hongbing Li, 2024. "Analysis of Influencing Factors and Prediction of the Peak Value of Industrial Carbon Emission in the Sichuan-Chongqing Region," Sustainability, MDPI, vol. 16(11), pages 1-24, May.
    5. Liang, Xiaoying & Fan, Min & Huang, Xiaofang & Cai, Can & Zhou, Lele & Wang, Yuanzhe, 2024. "Spatial distributed characteristics of carbon dioxide emissions based on fossil energy consumption and their driving factors at provincial scale in China," Energy, Elsevier, vol. 309(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Fan & Xie, Danyang, 2024. "The Role of R&D for Climate Change Mitigation in China: a Dynamic General Equilibrium Analysis," MPRA Paper 123556, University Library of Munich, Germany.
    2. Sapkota, Krishna & Gemechu, Eskinder & Oni, Abayomi Olufemi & Ma, Linwei & Kumar, Amit, 2022. "Greenhouse gas emissions from Canadian oil sands supply chains to China," Energy, Elsevier, vol. 251(C).
    3. Zhang, Xi & Geng, Yong & Shao, Shuai & Wilson, Jeffrey & Song, Xiaoqian & You, Wei, 2020. "China’s non-fossil energy development and its 2030 CO2 reduction targets: The role of urbanization," Applied Energy, Elsevier, vol. 261(C).
    4. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Larry Hughes & Moniek Jong & Zach Thorne, 2021. "(De)coupling and (De)carbonizing in the economies and energy systems of the G20," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5614-5639, April.
    6. Yang, Jingluan & Chen, Wei, 2023. "Unravelling the landscape of global cobalt trade: Patterns, robustness, and supply chain security," Resources Policy, Elsevier, vol. 86(PB).
    7. Chu, Baoju & Dong, Yizhe & Liu, Yaorong & Ma, Diandian & Wang, Tianju, 2024. "Does China's emission trading scheme affect corporate financial performance: Evidence from a quasi-natural experiment," Economic Modelling, Elsevier, vol. 132(C).
    8. Feng Dong & Xinqi Gao & Jingyun Li & Yuanqing Zhang & Yajie Liu, 2018. "Drivers of China’s Industrial Carbon Emissions: Evidence from Joint PDA and LMDI Approaches," IJERPH, MDPI, vol. 15(12), pages 1-28, December.
    9. Gang Xu & Tianyi Zeng & Hong Jin & Cong Xu & Ziqi Zhang, 2023. "Spatio-Temporal Variations and Influencing Factors of Country-Level Carbon Emissions for Northeast China Based on VIIRS Nighttime Lighting Data," IJERPH, MDPI, vol. 20(1), pages 1-17, January.
    10. Michel Elzen & Annemiek Admiraal & Mark Roelfsema & Heleen Soest & Andries F. Hof & Nicklas Forsell, 2016. "Contribution of the G20 economies to the global impact of the Paris agreement climate proposals," Climatic Change, Springer, vol. 137(3), pages 655-665, August.
    11. Zhao, Rui & Zhou, Xiao & Han, Jiaojie & Liu, Chengliang, 2016. "For the sustainable performance of the carbon reduction labeling policies under an evolutionary game simulation," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 262-274.
    12. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    13. Yang, Zhaofu & Liu, Hong & Yuan, Yongna & Li, Muhua, 2024. "Can renewable energy development facilitate China's sustainable energy transition? Perspective from Energy Trilemma," Energy, Elsevier, vol. 304(C).
    14. Huo, Xiaolin & Jiang, Dayan & Qiu, Zhigang & Yang, Sijie, 2022. "The impacts of dual carbon goals on asset prices in China," Journal of Asian Economics, Elsevier, vol. 83(C).
    15. Mu, Yaqian & Wang, Can & Cai, Wenjia, 2018. "The economic impact of China's INDC: Distinguishing the roles of the renewable energy quota and the carbon market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2955-2966.
    16. Rasool, Samma Faiz & Zaman, Shah & Jehan, Noor & Chin, Tachia & Khan, Saleem & Zaman, Qamar uz, 2022. "Investigating the role of the tech industry, renewable energy, and urbanization in sustainable environment: Policy directions in the context of developing economies," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    17. Chao-Qun Ma & Jiang-Long Liu & Yi-Shuai Ren & Yong Jiang, 2019. "The Impact of Economic Growth, FDI and Energy Intensity on China’s Manufacturing Industry’s CO 2 Emissions: An Empirical Study Based on the Fixed-Effect Panel Quantile Regression Model," Energies, MDPI, vol. 12(24), pages 1-16, December.
    18. Jiang, Suqin & Chen, Zun & Shan, Li & Chen, Xinyu & Wang, Haikun, 2017. "Committed CO2 emissions of China's coal-fired power generators from 1993 to 2013," Energy Policy, Elsevier, vol. 104(C), pages 295-302.
    19. Chen, Huadong & Wang, Can & Cai, Wenjia & Wang, Jianhui, 2018. "Simulating the impact of investment preference on low-carbon transition in power sector," Applied Energy, Elsevier, vol. 217(C), pages 440-455.
    20. Zhang, Lihua & Chen, Xinyu & Xu, Zheng, 2024. "Can development zones reduce energy consumption and carbon emissions of enterprises? Evidence from China," Journal of Asian Economics, Elsevier, vol. 95(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:3233-:d:1628393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.