IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i5p2005-d1600287.html
   My bibliography  Save this article

Investigating the Role of Urban Factors in COVID-19 Transmission During the Pre- and Post-Omicron Periods: A Case Study of South Korea

Author

Listed:
  • Seongyoun Shin

    (Department of Smart City Planning and Real Estate, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea)

  • Jaewoong Won

    (Department of Smart City Planning and Real Estate, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
    Department of Real Estate, Graduate School of Business, Kyung Hee University, Seoul 02447, Republic of Korea)

Abstract

While the literature has investigated the associations between urban environments and COVID-19 infection, most studies primarily focused on urban density factors and early outbreaks, often reporting mixed results. We examined how diverse urban factors impact COVID-19 cases across 229 administrative districts in South Korea during Pre-Omicron and Post-Omicron periods. Real-time big data (Wi-Fi, GPS, and credit card transactions) were integrated to capture dynamic mobility and economic activities. Using negative binomial regression and random forest modeling, we analyzed urban factors within the D-variable framework: density (e.g., housing density), diversity (e.g., land-use mix), design (e.g., street connectivity), and destination accessibility (e.g., cultural and community facilities). The results revealed the consistent significance of density and destination-related factors across analytic approaches and transmission phases, but specific factors of significance varied over time. Residential and population densities were more related in the early phase, while employment levels and cultural and community facilities became more relevant in the later phase. Traffic volume and local consumption appeared important, though their significance is not consistent across the models. Our findings highlight the need for adaptive urban planning strategies and public health policies that consider both static and dynamic urban factors to minimize disease risks while sustaining urban vitality and health in the evolving pandemic.

Suggested Citation

  • Seongyoun Shin & Jaewoong Won, 2025. "Investigating the Role of Urban Factors in COVID-19 Transmission During the Pre- and Post-Omicron Periods: A Case Study of South Korea," Sustainability, MDPI, vol. 17(5), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2005-:d:1600287
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/5/2005/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/5/2005/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cameron,A. Colin & Trivedi,Pravin K., 2013. "Regression Analysis of Count Data," Cambridge Books, Cambridge University Press, number 9781107667273, November.
    2. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    3. Yun Jo & Andy Hong & Hyungun Sung, 2021. "Density or Connectivity: What Are the Main Causes of the Spatial Proliferation of COVID-19 in Korea?," IJERPH, MDPI, vol. 18(10), pages 1-16, May.
    4. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    5. Heyuan You & Xin Wu & Xuxu Guo, 2020. "Distribution of COVID-19 Morbidity Rate in Association with Social and Economic Factors in Wuhan, China: Implications for Urban Development," IJERPH, MDPI, vol. 17(10), pages 1-14, May.
    6. Almagro, Milena & Orane-Hutchinson, Angelo, 2022. "JUE Insight: The determinants of the differential exposure to COVID-19 in New York city and their evolution over time," Journal of Urban Economics, Elsevier, vol. 127(C).
    7. Andy Hong & Sandip Chakrabarti, 2023. "Compact living or policy inaction? Effects of urban density and lockdown on the COVID-19 outbreak in the US," Urban Studies, Urban Studies Journal Limited, vol. 60(9), pages 1588-1609, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Xinyu Jason, 2019. "Examining the effect of the Hiawatha LRT on auto use in the Twin Cities," Transport Policy, Elsevier, vol. 81(C), pages 284-292.
    2. Caldarola, Bernardo & Sorrell, Steve, 2022. "Do teleworkers travel less? Evidence from the English National Travel Survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 282-303.
    3. Jingjing Wang & Xueying Wu & Ruoyu Wang & Dongsheng He & Dongying Li & Linchuan Yang & Yiyang Yang & Yi Lu, 2021. "Review of Associations between Built Environment Characteristics and Severe Acute Respiratory Syndrome Coronavirus 2 Infection Risk," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
    4. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
    5. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    6. Wang, Xu & Zhang, Xiaobo & Xie, Zhuan & Huang, Yiping, 2016. "Roads to innovation: Firm-level evidence from China," IFPRI discussion papers 1542, International Food Policy Research Institute (IFPRI).
    7. Preusse, Verena & Wollni, Meike, 2021. "Adoption of sustainable agricultural practices in the context of urbanisation and environmental stress – Evidence from farmers in the rural-urban interface of Bangalore, India," 2021 Annual Meeting, August 1-3, Austin, Texas 312690, Agricultural and Applied Economics Association.
    8. Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.
    9. John Stanley & Janet Stanley, 2023. "Improving Appraisal Methodology for Land Use Transport Measures to Reduce Risk of Social Exclusion," Sustainability, MDPI, vol. 15(15), pages 1-18, August.
    10. Marie Geraldine Herrmann-Lunecke & Cristhian Figueroa-Martínez & Francisca Parra Huerta & Rodrigo Mora, 2022. "The Disabling City: Older Persons Walking in Central Neighbourhoods of Santiago de Chile," Sustainability, MDPI, vol. 14(17), pages 1-19, September.
    11. Bono, Pierre-Henri & David, Quentin & Desbordes, Rodolphe & Py, Loriane, 2022. "Metro infrastructure and metropolitan attractiveness," Regional Science and Urban Economics, Elsevier, vol. 93(C).
    12. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    13. Shoshan, Vered & Hazan, Tamir & Plonsky, Ori, 2023. "BEAST-Net: Learning novel behavioral insights using a neural network adaptation of a behavioral model," OSF Preprints kaeny, Center for Open Science.
    14. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    15. Van Acker, Veronique & Ho, Loan & Stevens, Larissa & Mulley, Corinne, 2020. "Quantifying the effects of childhood and previous residential experiences on the use of public transport," Journal of Transport Geography, Elsevier, vol. 86(C).
    16. Scott, Ryan P. & Scott, Tyler A., 2019. "Investing in collaboration for safety: Assessing grants to states for oil and gas distribution pipeline safety program enhancement," Energy Policy, Elsevier, vol. 124(C), pages 332-345.
    17. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    18. Stephane Helleringer & Insa Diouf & Cheikh Tidiane Ndiaye & Laetitia Douillot & Valerie Delaunay & Rene Vidal & Laurence Fleury & Chong You, 2019. "Improving age measurement in low- and middle-income countries through computer vision: A test in Senegal," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 40(9), pages 219-260.
    19. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    20. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2005-:d:1600287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.