IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i2p438-d1562735.html
   My bibliography  Save this article

Explainable Warm-Start Point Learning for AC Optimal Power Flow Using a Novel Hybrid Stacked Ensemble Method

Author

Listed:
  • Kaijie Xu

    (Zhejiang University-University of Illinois Urbana-Champaign Institute, Zhejiang University, Haining 314400, China)

  • Xiaochen Zhang

    (Zhejiang University-University of Illinois Urbana-Champaign Institute, Zhejiang University, Haining 314400, China)

  • Lin Qiu

    (Zhejiang University-University of Illinois Urbana-Champaign Institute, Zhejiang University, Haining 314400, China
    College of Electrical Engineering, Zhejiang University, Hangzhou 310058, China)

Abstract

With the development of renewable energy, renewable power generation has become an increasingly important component of the power system. However, it also introduces uncertainty into the analysis of the power system. Therefore, to accelerate the solution of the OPF problem, this paper proposes a novel Hybrid Stacked Ensemble Method (HSEM), which incorporates explainable warm-start point learning for AC optimal power flow. The HSEM integrates conventional machine learning techniques, including regression trees and random forests, with gradient boosting trees. This combination leverages the individual strengths of each algorithm, thereby enhancing the overall generalization capabilities of the model in addressing AC-OPF problems and improving its interpretability. Experimental results indicate that the HSEM model achieves superior accuracy in AC-OPF solutions compared to traditional Deep Neural Network (DNN) approaches. Furthermore, the HSEM demonstrates significant improvements in both the feasibility and constraint satisfaction of control variables. The effectiveness of the proposed HSEM is validated through rigorous testing on the IEEE-30 bus system and the IEEE-118 bus system, demonstrating its ability to provide an explainable warm-start point for solving AC-OPF problems.

Suggested Citation

  • Kaijie Xu & Xiaochen Zhang & Lin Qiu, 2025. "Explainable Warm-Start Point Learning for AC Optimal Power Flow Using a Novel Hybrid Stacked Ensemble Method," Sustainability, MDPI, vol. 17(2), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:438-:d:1562735
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/2/438/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/2/438/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pourakbari-Kasmaei, Mahdi & Rider, Marcos J. & Mantovani, José R.S., 2014. "An unequivocal normalization-based paradigm to solve dynamic economic and emission active-reactive OPF (optimal power flow)," Energy, Elsevier, vol. 73(C), pages 554-566.
    2. Sharma, Akanksha & Jain, Sanjay K., 2021. "Day-ahead optimal reactive power ancillary service procurement under dynamic multi-objective framework in wind integrated deregulated power system," Energy, Elsevier, vol. 223(C).
    3. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    4. Hasanien, Hany M. & Alsaleh, Ibrahim & Alassaf, Abdullah & Alateeq, Ayoob, 2023. "Enhanced coati optimization algorithm-based optimal power flow including renewable energy uncertainties and electric vehicles," Energy, Elsevier, vol. 283(C).
    5. Nguyen, Thang Trung, 2019. "A high performance social spider optimization algorithm for optimal power flow solution with single objective optimization," Energy, Elsevier, vol. 171(C), pages 218-240.
    6. Jamal, Raheela & Zhang, Junzhe & Men, Baohui & Khan, Noor Habib & Ebeed, Mohamed & Jamal, Tanzeela & Mohamed, Emad A., 2024. "Chaotic-quasi-oppositional-phasor based multi populations gorilla troop optimizer for optimal power flow solution," Energy, Elsevier, vol. 301(C).
    7. Adhvaryyu, P.K. & Chattopadhyay, P.K. & Bhattacharya, A., 2017. "Dynamic optimal power flow of combined heat and power system with Valve-point effect using Krill Herd algorithm," Energy, Elsevier, vol. 127(C), pages 756-767.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ozkaya, Burcin, 2024. "Enhanced growth optimizer algorithm with dynamic fitness-distance balance method for solution of security-constrained optimal power flow problem in the presence of stochastic wind and solar energy," Applied Energy, Elsevier, vol. 368(C).
    2. Rafa Elshara & Aybaba Hançerlioğullari & Javad Rahebi & Jose Manuel Lopez-Guede, 2024. "PV Cells and Modules Parameter Estimation Using Coati Optimization Algorithm," Energies, MDPI, vol. 17(7), pages 1-26, April.
    3. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    4. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    5. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    6. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    7. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    8. Rahmani, Shima & Amjady, Nima, 2017. "A new optimal power flow approach for wind energy integrated power systems," Energy, Elsevier, vol. 134(C), pages 349-359.
    9. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    10. Cao, Jason & Tao, Tao, 2025. "Can an identified environmental correlate of car ownership serve as a practical planning tool?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 191(C).
    11. Dursun Delen & Hamed M. Zolbanin & Durand Crosby & David Wright, 2021. "To imprison or not to imprison: an analytics model for drug courts," Annals of Operations Research, Springer, vol. 303(1), pages 101-124, August.
    12. Doruk Cengiz & Arindrajit Dube & Attila Lindner & David Zentler-Munro, 2022. "Seeing beyond the Trees: Using Machine Learning to Estimate the Impact of Minimum Wages on Labor Market Outcomes," Journal of Labor Economics, University of Chicago Press, vol. 40(S1), pages 203-247.
    13. Zhou, Jing & Li, Wei & Wang, Jiaxin & Ding, Shuai & Xia, Chengyi, 2019. "Default prediction in P2P lending from high-dimensional data based on machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    14. Lu, Yingjie & Li, Tao & Hu, Hui & Zeng, Xuemei, 2023. "Short-term prediction of reference crop evapotranspiration based on machine learning with different decomposition methods in arid areas of China," Agricultural Water Management, Elsevier, vol. 279(C).
    15. Bohdan M. Pavlyshenko, 2019. "Machine-Learning Models for Sales Time Series Forecasting," Data, MDPI, vol. 4(1), pages 1-11, January.
    16. Sieun Lee & Eunhae Cho & Geunsoo Jang & Sangil Kim & Giphil Cho, 2022. "Early detection of norovirus outbreak using machine learning methods in South Korea," PLOS ONE, Public Library of Science, vol. 17(11), pages 1-12, November.
    17. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    18. Jason R. W. Merrick & Claire A. Dorsey & Bo Wang & Martha Grabowski & John R. Harrald, 2022. "Measuring Prediction Accuracy in a Maritime Accident Warning System," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 819-827, February.
    19. Atefeh Alirezazadeh & Vahid Disfani, 2025. "Deep Reinforcement Learning-Based Optimization of Mobile Charging Station and Battery Recharging Under Grid Constraints," Energies, MDPI, vol. 18(20), pages 1-21, October.
    20. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:438-:d:1562735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.