IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i21p9446-d1778580.html
   My bibliography  Save this article

Towards Credible and Comparable Accounting of Environmental Attributes: Applicability and Limitation on Non-Proportional Allocation as Mass Balance Model

Author

Listed:
  • Taichi Suzuki

    (Research & Development Center, UACJ Corporation, Nagoya 455-8670, Japan
    Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, Tokyo 153-8904, Japan)

  • Jun Nakatani

    (Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
    UTokyo LCA Center for Future Strategy, The University of Tokyo, Tokyo 153-8904, Japan)

  • Ichiro Daigo

    (Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, Tokyo 153-8904, Japan
    UTokyo LCA Center for Future Strategy, The University of Tokyo, Tokyo 153-8904, Japan
    Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan)

Abstract

There is a growing demand for industrial materials that claim environmental attributes based on life cycle thinking. To track and manage such environmental attributes, Chain of custody (CoC) models are growingly applied. Among CoC models, the mass balance model–credit method (MB-CR) and book and claim (B&C) model implement non-proportional allocation of environmental attributes. Though there is a case that applying these models could avoid additional environmental burdens that would otherwise occur, the eligibility of applying non-proportional allocation requires careful consideration. This study aims to clarify the requirement and limitation for applying MB-CR and B&C models and to justify the cases of applying those models. A key requirement is environmental rationality, defined as the ability to contribute to avoiding additional environmental burdens, particularly during transition phases where the target environmental attribute is not abundant. A key limitation is technical feasibility, which constrains allocation within what is physically achievable for industrial materials. This study contributes to establishing a scientifically grounded and systematically structured methodology for non-proportional allocation of environmental attributes. Applying MB-CR and B&C models under the requirement and limitation ensures that the non-proportional allocation aligns with the avoidance of environmental burden while maintaining credibility, transparency, and feasibility in environmental claims of industrial materials.

Suggested Citation

  • Taichi Suzuki & Jun Nakatani & Ichiro Daigo, 2025. "Towards Credible and Comparable Accounting of Environmental Attributes: Applicability and Limitation on Non-Proportional Allocation as Mass Balance Model," Sustainability, MDPI, vol. 17(21), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:21:p:9446-:d:1778580
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/21/9446/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/21/9446/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pechstein, Jan & Bullerdiek, Nils & Kaltschmitt, Martin, 2020. "A “book and Claim”-Approach to account for sustainable aviation fuels in the EU-ETS – Development of a basic concept," Energy Policy, Elsevier, vol. 136(C).
    2. Arthur P. J. Mol & Peter Oosterveer, 2015. "Certification of Markets, Markets of Certificates: Tracing Sustainability in Global Agro-Food Value Chains," Sustainability, MDPI, vol. 7(9), pages 1-21, September.
    3. Eduardo Cabrera & João M. Melo de Sousa, 2022. "Use of Sustainable Fuels in Aviation—A Review," Energies, MDPI, vol. 15(7), pages 1-23, March.
    4. Rainer Lueg & Maria Medelby Pedersen & Søren Nørregaard Clemmensen, 2015. "The Role of Corporate Sustainability in a Low‐Cost Business Model – A Case Study in the Scandinavian Fashion Industry," Business Strategy and the Environment, Wiley Blackwell, vol. 24(5), pages 344-359, July.
    5. Xianhong Li & Haibin Yu & Mingzhe Yuan, 2012. "Modeling and Optimization of Cement Raw Materials Blending Process," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-30, December.
    6. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    7. Taichi Suzuki & Ichiro Daigo, 2024. "Recycled Content for Metals with Refined Classification of Metal Scrap: Micro-Level Circularity Indicator in Accordance with Macro-Level System," Sustainability, MDPI, vol. 16(16), pages 1-13, August.
    8. Caleb Gallemore & Kristjan Jespersen, 2019. "Offsetting, Insetting, or Both? Current Trends in Sustainable Palm Oil Certification," Sustainability, MDPI, vol. 11(19), pages 1-15, September.
    9. Comello, Stephen & Reichelstein, Julia & Reichelstein, Stefan, 2023. "Corporate carbon reporting: Improving transparency and accountability," ZEW Discussion Papers 23-026, ZEW - Leibniz Centre for European Economic Research.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sales-Setién, Ester & Peñarrocha-Alós, Ignacio, 2020. "Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level," Renewable Energy, Elsevier, vol. 146(C), pages 1746-1765.
    2. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    3. Francisco José Sepúlveda & María Teresa Miranda & Irene Montero & José Ignacio Arranz & Francisco Javier Lozano & Manuel Matamoros & Paloma Rodríguez, 2019. "Analysis of Potential Use of Linear Fresnel Collector for Direct Steam Generation in Industries of the Southwest of Europe," Energies, MDPI, vol. 12(21), pages 1-15, October.
    4. Tutar, Halit & Eren, Ömer & Er, Hasan & Gonulal, Erdal & Gokdogan, Osman, 2025. "Field-based experimental greenhouse gas emissions and energy use efficiency study of sorghum x sudan grass hybrid growth in a semi-arid region," Energy, Elsevier, vol. 315(C).
    5. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    6. Rahim Zahedi & Reza Eskandarpanah & Mohammadhossein Akbari & Nima Rezaei & Paniz Mazloumin & Omid Noudeh Farahani, 2022. "Development of a New Simulation Model for the Reservoir Hydropower Generation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2241-2256, May.
    7. Li, Peidu & Gao, Xiaoqing & Li, Zhenchao & Ye, Tiange & Zhou, Xiyin, 2022. "Effects of fishery complementary photovoltaic power plant on near-surface meteorology and energy balance," Renewable Energy, Elsevier, vol. 187(C), pages 698-709.
    8. Nadia Preghenella & Cinzia Battistella, 2021. "Exploring business models for sustainability: A bibliographic investigation of the literature and future research directions," Business Strategy and the Environment, Wiley Blackwell, vol. 30(5), pages 2505-2522, July.
    9. Saleem, Arslan & Kim, Man-Hoe, 2020. "Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm," Energy, Elsevier, vol. 203(C).
    10. Zafar, Muhammad Wasif & Shahbaz, Muhammad & Hou, Fujun & Sinha, Avik, 2018. "¬¬¬¬¬¬From Nonrenewable to Renewable Energy and Its Impact on Economic Growth: Silver Line of Research & Development Expenditures in APEC Countries," MPRA Paper 90611, University Library of Munich, Germany, revised 10 Dec 2018.
    11. Diego Larrahondo & Ricardo Moreno & Harold R. Chamorro & Francisco Gonzalez-Longatt, 2021. "Comparative Performance of Multi-Period ACOPF and Multi-Period DCOPF under High Integration of Wind Power," Energies, MDPI, vol. 14(15), pages 1-15, July.
    12. Abel D Alonso & Seng Kok, 2018. "A resource-based view and dynamic capabilities approach in the context of a region’s international attractiveness: The recent case of Western Australia," Local Economy, London South Bank University, vol. 33(3), pages 307-328, May.
    13. Hu, ZhiWen & Wang, HanYi, 2024. "Feasibility study of energy storage using hydraulic fracturing in shale formations," Applied Energy, Elsevier, vol. 354(PB).
    14. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    15. Zhang, Xiaochun & Ma, Chun & Song, Xia & Zhou, Yuyu & Chen, Weiping, 2016. "The impacts of wind technology advancement on future global energy," Applied Energy, Elsevier, vol. 184(C), pages 1033-1037.
    16. Kumar, Vikash, 2021. "Experimental investigation of exergetic efficiency of 3 side concave dimple roughened absorbers," Energy, Elsevier, vol. 215(PB).
    17. Xiongyong Zhou & Madeleine Pullman & Zhiduan Xu, 2022. "The impact of food supply chain traceability on sustainability performance," Operations Management Research, Springer, vol. 15(1), pages 93-115, June.
    18. Cosimo, Luiz Henrique Elias & Masiero, Mauro & Mammadova, Aynur & Pettenella, Davide, 2024. "Voluntary sustainability standards to cope with the new European Union regulation on deforestation-free products: A gap analysis," Forest Policy and Economics, Elsevier, vol. 164(C).
    19. Shahryar Jafarinejad & Rebecca R. Hernandez & Sajjad Bigham & Bryan S. Beckingham, 2023. "The Intertwined Renewable Energy–Water–Environment (REWE) Nexus Challenges and Opportunities: A Case Study of California," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    20. Dandikas, Vasilis & Heuwinkel, Hauke & Lichti, Fabian & Eckl, Thomas & Drewes, Jörg E. & Koch, Konrad, 2018. "Correlation between hydrolysis rate constant and chemical composition of energy crops," Renewable Energy, Elsevier, vol. 118(C), pages 34-42.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:21:p:9446-:d:1778580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.