IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i20p9246-d1774150.html
   My bibliography  Save this article

Vehicle-Integrated Photovoltaic (VIPV) for Sustainable Airports: A Flexible Framework for Performance Assessment

Author

Listed:
  • Hamid Samadi

    (Department of Engineering, University of Palermo, 90128 Palermo, Italy)

  • Guido Ala

    (Department of Engineering, University of Palermo, 90128 Palermo, Italy)

  • Miguel Centeno Brito

    (Institute of Dom Luiz (IDL), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal)

  • Giulia Marcon

    (Department of Engineering, University of Palermo, 90128 Palermo, Italy)

  • Pietro Romano

    (Department of Engineering, University of Palermo, 90128 Palermo, Italy)

  • Fabio Viola

    (Department of Engineering, University of Palermo, 90128 Palermo, Italy)

Abstract

Airports are among the most energy-intensive infrastructures, and the decarbonization of ground operations is essential to achieving sustainable aviation goals. Vehicle-integrated photovoltaic (VIPV) offers a promising strategy to complement electrification by enabling on-board renewable generation. While previous studies have mainly focused on fixed PV installations such as rooftops or carports, the potential of VIPV in airports has largely been overlooked, and no structured methodology has been established to investigate it. This study addresses this gap by proposing a two-scenario framework for assessing VIPV performance. The first scenario, named the Generalized Approach, estimates annual energy production based on irradiance data, vehicle surface area, and driving-to-standby ratios. The second scenario, named the Data-Driven Approach, incorporates detailed GPS-based driving data to capture the dynamic effects of orientation, speed, and operating conditions. Applied to European and Middle Eastern airports, the framework showed that VIPV could cover 1700–5500 k m / y e a r for buses, 650–5000 k m / y e a r for minibuses, and 840–6180 k m / y e a r for luggage tractors, with avoided emissions strongly influenced by local grid intensity. Grid parity analysis indicated favorable conditions in sunny, high-cost electricity markets. The framework is transferable to other VIPV applications and provides a practical tool for evaluating their technical, environmental, and economic potential.

Suggested Citation

  • Hamid Samadi & Guido Ala & Miguel Centeno Brito & Giulia Marcon & Pietro Romano & Fabio Viola, 2025. "Vehicle-Integrated Photovoltaic (VIPV) for Sustainable Airports: A Flexible Framework for Performance Assessment," Sustainability, MDPI, vol. 17(20), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:20:p:9246-:d:1774150
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/20/9246/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/20/9246/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiang, Yue & Cai, Hanhu & Liu, Junyong & Zhang, Xin, 2021. "Techno-economic design of energy systems for airport electrification: A hydrogen-solar-storage integrated microgrid solution," Applied Energy, Elsevier, vol. 283(C).
    2. Nallapaneni Manoj Kumar & Shauhrat S. Chopra & Maria Malvoni & Rajvikram Madurai Elavarasan & Narottam Das, 2020. "Solar Cell Technology Selection for a PV Leaf Based on Energy and Sustainability Indicators—A Case of a Multilayered Solar Photovoltaic Tree," Energies, MDPI, vol. 13(23), pages 1-26, December.
    3. Adedayo Ajayi & Patrick Chi-Kwong Luk & Liyun Lao & Mohammad Farhan Khan, 2023. "Energy Forecasting Model for Ground Movement Operation in Green Airport," Energies, MDPI, vol. 16(13), pages 1-19, June.
    4. Thiel, Christian & Gracia Amillo, Ana & Tansini, Alessandro & Tsakalidis, Anastasios & Fontaras, Georgios & Dunlop, Ewan & Taylor, Nigel & Jäger-Waldau, Arnulf & Araki, Kenji & Nishioka, Kensuke & Ota, 2022. "Impact of climatic conditions on prospects for integrated photovoltaics in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Ollas, Patrik & Sigarchian, Sara Ghaem & Alfredsson, Hampus & Leijon, Jennifer & Döhler, Jessica Santos & Aalhuizen, Christoffer & Thiringer, Torbjörn & Thomas, Karin, 2023. "Evaluating the role of solar photovoltaic and battery storage in supporting electric aviation and vehicle infrastructure at Visby Airport," Applied Energy, Elsevier, vol. 352(C).
    6. Kevin R. Mallon & Francis Assadian & Bo Fu, 2017. "Analysis of On-Board Photovoltaics for a Battery Electric Bus and Their Impact on Battery Lifespan," Energies, MDPI, vol. 10(7), pages 1-31, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenji Araki & Yasuyuki Ota & Akira Nagaoka & Kensuke Nishioka, 2023. "3D Solar Irradiance Model for Non-Uniform Shading Environments Using Shading (Aperture) Matrix Enhanced by Local Coordinate System," Energies, MDPI, vol. 16(11), pages 1-20, May.
    2. Verdugo, Pablo & Cañizares, Claudio & Pirnia, Mehrdad, 2025. "Modeling and energy management of hangar thermo-electrical microgrid for electric plane charging considering multiple zones and resources," Applied Energy, Elsevier, vol. 379(C).
    3. Tsakalidis, Anastasios & Thiel, Christian & Jäger-Waldau, Arnulf, 2025. "Can solar electric vehicles disrupt mobility? A critical literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    4. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    5. Ye, Jin & Shuai, Qilin & Hua, Qingsong, 2025. "Dynamic programming-based low-carbon and economic scheduling of integrated energy system," Energy, Elsevier, vol. 322(C).
    6. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Wang, Xin & Atkin, Jason & Bozhko, Serhiy, 2025. "Fault-tolerant hierarchical energy management system for an electrical power system on more-electric aircraft," Applied Energy, Elsevier, vol. 379(C).
    8. Förster, Robert & Kaiser, Matthias & Wenninger, Simon, 2023. "Future vehicle energy supply - sustainable design and operation of hybrid hydrogen and electric microgrids," Applied Energy, Elsevier, vol. 334(C).
    9. Jieun Baek & Yosoon Choi, 2022. "Comparative Study on Shading Database Construction for Urban Roads Using 3D Models and Fisheye Images for Efficient Operation of Solar-Powered Electric Vehicles," Energies, MDPI, vol. 15(21), pages 1-24, November.
    10. Zhang, Guodao & Ge, Yisu & Pan, Xiaotian & Zheng, Yun & Yang, Yanhong, 2023. "Hybrid robust-stochastic multi-objective optimization of combined cooling, heating, hydrogen and power-based microgrids," Energy, Elsevier, vol. 274(C).
    11. Arkadiusz Kampczyk & Wojciech Gamon & Katarzyna Gawlak, 2023. "Integration of Traction Electricity Consumption Determinants with Route Geometry and Vehicle Characteristics," Energies, MDPI, vol. 16(6), pages 1-23, March.
    12. Cui, Qi & Li, Xiaofan & Bai, Xiaoxin & He, Ling & Liu, Mengting, 2025. "How the synergy effect between renewable electricity deployment and terminal electrification mitigates transportation sectors' carbon emissions in China?," Transport Policy, Elsevier, vol. 166(C), pages 135-147.
    13. Long, Yong & Liu, Xia, 2024. "Optimal green investment strategy for grid-connected microgrid considering the impact of renewable energy source endowment and incentive policy," Energy, Elsevier, vol. 295(C).
    14. Evangelos S. Chatzistylianos & Georgios N. Psarros & Stavros A. Papathanassiou, 2024. "Export Constraints Applicable to Renewable Generation to Enhance Grid Hosting Capacity," Energies, MDPI, vol. 17(11), pages 1-30, May.
    15. K, Peddakapu & Mohamed, M.R. & Harika, R. Pavan & Srinivasrao, P. & Licari, J., 2024. "Climate-adaptive battery solutions for renewable microgrids: A case study in Indian coastal and inland regions," Energy, Elsevier, vol. 308(C).
    16. Bie, Yiming & Qin, Wei & Wu, Jiabin, 2024. "Optimal electric bus scheduling method under hybrid energy supply mode of photovoltaic-energy storage system-power grid," Applied Energy, Elsevier, vol. 372(C).
    17. Ku, Jiyoon & Kim, Sung-Min & Park, Hyeong-Dong, 2024. "Energy-saving path planning navigation for solar-powered vehicles considering shadows," Renewable Energy, Elsevier, vol. 236(C).
    18. Oscar Utomo & Muditha Abeysekera & Carlos E. Ugalde-Loo, 2021. "Optimal Operation of a Hydrogen Storage and Fuel Cell Coupled Integrated Energy System," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    19. Md. Tanjil Sarker & Mohammed Hussein Saleh Mohammed Haram & Siow Jat Shern & Gobbi Ramasamy & Fahmid Al Farid, 2024. "Second-Life Electric Vehicle Batteries for Home Photovoltaic Systems: Transforming Energy Storage and Sustainability," Energies, MDPI, vol. 17(10), pages 1-23, May.
    20. Wang, Wenting & Yang, Dazhi & Huang, Nantian & Lyu, Chao & Zhang, Gang & Han, Xueying, 2022. "Irradiance-to-power conversion based on physical model chain: An application on the optimal configuration of multi-energy microgrid in cold climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:20:p:9246-:d:1774150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.