IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6439-d457420.html
   My bibliography  Save this article

Solar Cell Technology Selection for a PV Leaf Based on Energy and Sustainability Indicators—A Case of a Multilayered Solar Photovoltaic Tree

Author

Listed:
  • Nallapaneni Manoj Kumar

    (School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong)

  • Shauhrat S. Chopra

    (School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong)

  • Maria Malvoni

    (School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece)

  • Rajvikram Madurai Elavarasan

    (Electrical and Automotive Parts Manufacturing Unit, AA Industries, Chennai 600123, India)

  • Narottam Das

    (School of Engineering and Technology, Central Queensland University Australia, Melbourne, VIC 3000, Australia
    Centre for Intelligent Systems, School of Engineering and Technology, Central Queensland University, Brisbane, QLD 4000, Australia)

Abstract

Harnessing energy from the sunlight using solar photovoltaic trees (SPVTs) has become popular at present as they reduce land footprint and offer numerous complimentary services that offset infrastructure. The SPVT’s complimentary services are noticeable in many ways, e.g., electric vehicle charging stations, landscaping, passenger shelters, onsite energy generated security poles, etc. Although the SPVT offers numerous benefits and services, its deployment is relatively slower due to the challenges it suffers. The most difficult challenges include the structure design, the photovoltaic (PV) cell technology selection for a leaf, and uncertainty in performance due to weather parameter variations. This paper aims to provide the most practical solution supported by the performance prioritization approach (PPA) framework for a typical multilayered SPVT. The proposed PPA framework considers the energy and sustainability indicators and helps in reporting the performance of a multilayered SPVT, with the aim of selecting an efficient PV leaf design. A three-layered SPVT (3-L SPVT) is simulated; moreover, the degradation-influenced lifetime energy performance and carbon dioxide (CO 2 ) emissions were evaluated for three different PV-cell technologies, namely crystalline silicon (c-Si), copper indium gallium selenide (CIGS), and cadmium telluride (CdTe). While evaluating the performance of the 3-L SPVT, the power conversion efficiency, thermal regulation, degradation rate, and lifecycle carbon emissions were considered. The results of the 3-L SPVT were analyzed thoroughly, and it was found that in the early years, the c-Si PV leaves give better energy yields. However, when degradation and other influencing weather parameters were considered over its lifetime, the SPVT with c-Si leaves showed a lowered energy yield. Overall, the lifetime energy and CO 2 emission results indicate that the CdTe PV leaf outperforms due to its lower degradation rate compared to c-Si and CIGS. On the other side, the benefits associated with CdTe cells, such as flexible and ultrathin glass structure as well as low-cost manufacturing, make them the best acceptable PV leaf for SPVT design. Through this investigation, we present the selection of suitable solar cell technology for a PV leaf.

Suggested Citation

  • Nallapaneni Manoj Kumar & Shauhrat S. Chopra & Maria Malvoni & Rajvikram Madurai Elavarasan & Narottam Das, 2020. "Solar Cell Technology Selection for a PV Leaf Based on Energy and Sustainability Indicators—A Case of a Multilayered Solar Photovoltaic Tree," Energies, MDPI, vol. 13(23), pages 1-26, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6439-:d:457420
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6439/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6439/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cao, Weiran & Li, Zhifeng & Yang, Yixing & Zheng, Ying & Yu, Weijie & Afzal, Rimza & Xue, Jiangeng, 2014. "“Solar tree”: Exploring new form factors of organic solar cells," Renewable Energy, Elsevier, vol. 72(C), pages 134-139.
    2. Abdulsalam S. Alghamdi & AbuBakr S. Bahaj & Yue Wu, 2017. "Assessment of Large Scale Photovoltaic Power Generation from Carport Canopies," Energies, MDPI, vol. 10(5), pages 1-22, May.
    3. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    4. Gökmen, Nuri & Hu, Weihao & Hou, Peng & Chen, Zhe & Sera, Dezso & Spataru, Sergiu, 2016. "Investigation of wind speed cooling effect on PV panels in windy locations," Renewable Energy, Elsevier, vol. 90(C), pages 283-290.
    5. Phinikarides, Alexander & Kindyni, Nitsa & Makrides, George & Georghiou, George E., 2014. "Review of photovoltaic degradation rate methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 143-152.
    6. Julián Ascencio-Vásquez & Ismail Kaaya & Kristijan Brecl & Karl-Anders Weiss & Marko Topič, 2019. "Global Climate Data Processing and Mapping of Degradation Mechanisms and Degradation Rates of PV Modules," Energies, MDPI, vol. 12(24), pages 1-16, December.
    7. Nallapaneni Manoj Kumar & Shauhrat S. Chopra & Aneesh A. Chand & Rajvikram Madurai Elavarasan & G.M. Shafiullah, 2020. "Hybrid Renewable Energy Microgrid for a Residential Community: A Techno-Economic and Environmental Perspective in the Context of the SDG7," Sustainability, MDPI, vol. 12(10), pages 1-30, May.
    8. Nallapaneni Manoj Kumar & Aritra Ghosh & Shauhrat S. Chopra, 2020. "Power Resilience Enhancement of a Residential Electricity User Using Photovoltaics and a Battery Energy Storage System under Uncertainty Conditions," Energies, MDPI, vol. 13(16), pages 1-26, August.
    9. Daniel Efurosibina Attoye & Kheira Anissa Tabet Aoul & Ahmed Hassan, 2017. "A Review on Building Integrated Photovoltaic Façade Customization Potentials," Sustainability, MDPI, vol. 9(12), pages 1-24, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chakraborty, Suprava & Haldkar, Avinash Kumar & Manoj Kumar, Nallapaneni, 2023. "Analysis of the hail impacts on the performance of commercially available photovoltaic modules of varying front glass thickness," Renewable Energy, Elsevier, vol. 203(C), pages 345-356.
    2. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    2. S. Ananda Kumar & M. S. P. Subathra & Nallapaneni Manoj Kumar & Maria Malvoni & N. J. Sairamya & S. Thomas George & Easter S. Suviseshamuthu & Shauhrat S. Chopra, 2020. "A Novel Islanding Detection Technique for a Resilient Photovoltaic-Based Distributed Power Generation System Using a Tunable-Q Wavelet Transform and an Artificial Neural Network," Energies, MDPI, vol. 13(16), pages 1-22, August.
    3. Juan Carlos Osorio-Aravena & Marina Frolova & Julio Terrados-Cepeda & Emilio Muñoz-Cerón, 2020. "Spatial Energy Planning: A Review," Energies, MDPI, vol. 13(20), pages 1-14, October.
    4. Chelsea Schelly & Don Lee & Elise Matz & Joshua M. Pearce, 2021. "Applying a Relationally and Socially Embedded Decision Framework to Solar Photovoltaic Adoption: A Conceptual Exploration," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    5. Zoltan Corba & Bane Popadic & Dragan Milicevic & Boris Dumnic & Vladimir A. Katic, 2020. "A Long-Term Condition Monitoring and Performance Assessment of Grid Connected PV Power Plant with High Power Sizing Factor under Partial Shading Conditions," Energies, MDPI, vol. 13(18), pages 1-19, September.
    6. Liu Lu & Wei Wei, 2023. "Influence of Public Sports Services on Residents’ Mental Health at Communities Level: New Insights from China," IJERPH, MDPI, vol. 20(2), pages 1-14, January.
    7. Atsu, Divine & Seres, Istvan & Aghaei, Mohammadreza & Farkas, Istvan, 2020. "Analysis of long-term performance and reliability of PV modules under tropical climatic conditions in sub-Saharan," Renewable Energy, Elsevier, vol. 162(C), pages 285-295.
    8. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    9. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    10. Andrzej Ożadowicz & Gabriela Walczyk, 2023. "Energy Performance and Control Strategy for Dynamic Façade with Perovskite PV Panels—Technical Analysis and Case Study," Energies, MDPI, vol. 16(9), pages 1-23, April.
    11. Siu-Kit Lau & Vesna Kosorić & Monika Bieri & André.M. Nobre, 2021. "Identification of Factors Influencing Development of Photovoltaic (PV) Implementation in Singapore," Sustainability, MDPI, vol. 13(5), pages 1-30, March.
    12. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    13. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    14. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.
    15. Kahoul, Nabil & Chenni, Rachid & Cheghib, Hocine & Mekhilef, Saad, 2017. "Evaluating the reliability of crystalline silicon photovoltaic modules in harsh environment," Renewable Energy, Elsevier, vol. 109(C), pages 66-72.
    16. Piotr Olczak & Małgorzata Olek & Dominika Matuszewska & Artur Dyczko & Tomasz Mania, 2021. "Monofacial and Bifacial Micro PV Installation as Element of Energy Transition—The Case of Poland," Energies, MDPI, vol. 14(2), pages 1-22, January.
    17. Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Alberto-Jesus Perea-Moreno, 2023. "Optimal Integration of Battery Systems in Grid-Connected Networks for Reducing Energy Losses and CO 2 Emissions," Mathematics, MDPI, vol. 11(7), pages 1-23, March.
    18. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    19. Thopil, George Alex & Sachse, Christiaan Eddie & Lalk, Jörg & Thopil, Miriam Sara, 2020. "Techno-economic performance comparison of crystalline and thin film PV panels under varying meteorological conditions: A high solar resource southern hemisphere case," Applied Energy, Elsevier, vol. 275(C).
    20. Yin, Rumeng & He, Jiang, 2023. "Design of a photovoltaic electric bike battery-sharing system in public transit stations," Applied Energy, Elsevier, vol. 332(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6439-:d:457420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.