IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i20p8974-d1767984.html
   My bibliography  Save this article

Research on Operation Data Mining and Analysis of VRF Air-Conditioning Systems Based on ARM and MLR Methods to Enhance Building Sustainability

Author

Listed:
  • Jiayin Zhu

    (School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Xin Liu

    (School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Zihan Xu

    (School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Xingtao Zhang

    (School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Congcong Du

    (School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Yabin Guo

    (School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Ruixin Li

    (School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China)

Abstract

With the increasing intelligence of modern air-conditioning systems, the difficulty of acquiring data from air-conditioning systems has been significantly reduced. However, analyzing the massive amounts of data collected and obtaining more valuable information still remains challenging, especially considering the internal relationships behind the data. The purpose of this study was to conduct operational experiments on VRF systems under different indoor set temperatures, indoor set air speeds, and terminal load rates. Then, the patterns of various operating parameters and energy consumption of VRF systems during winter operation were analyzed based on unsupervised methods. Three machine learning methods were primarily employed in this study, including correlation analysis, data regression analysis, and association rule analysis. Finally, a regression model was constructed for energy consumption based on eight typical characteristic parameters. The experimental results showed that the system was stable to a certain degree at different wind speeds. Among the characteristic parameters, fixed frequency 1 exhaust temperature, compressor frequency, and other parameters have a significant positive effect on energy consumption, while fixed frequency 1 shell top oil temperature, inlet and outlet pipe temperature difference, and other parameters have a negative effect. The research results provide a reference for air conditioning system data mining and building sustainability.

Suggested Citation

  • Jiayin Zhu & Xin Liu & Zihan Xu & Xingtao Zhang & Congcong Du & Yabin Guo & Ruixin Li, 2025. "Research on Operation Data Mining and Analysis of VRF Air-Conditioning Systems Based on ARM and MLR Methods to Enhance Building Sustainability," Sustainability, MDPI, vol. 17(20), pages 1-31, October.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:20:p:8974-:d:1767984
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/20/8974/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/20/8974/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Chunhua & Yuan, Lingyu & Cao, Shanshan & Xia, Guoqiang & Liu, Yanan & Wu, Xiangdong, 2023. "Identifying supply-demand mismatches in district heating system based on association rule mining," Energy, Elsevier, vol. 280(C).
    2. Ghadeer Alsanie, 2025. "Investigating the Impact of Digitalization on Resource Use, Energy Use, and Waste Reduction Towards Sustainability: Considering Environmental Awareness as a Moderator," Sustainability, MDPI, vol. 17(9), pages 1-37, April.
    3. Movahed, Paria & Taheri, Saman & Razban, Ali, 2023. "A bi-level data-driven framework for fault-detection and diagnosis of HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    4. Mehdi Seraj & Fatma Turuc Seraj, 2025. "The Impact of Sustainable Financial Development and Green Energy Transition on Climate Change in the World’s Highest Carbon-Emitting Countries," Sustainability, MDPI, vol. 17(9), pages 1-21, April.
    5. Bairami-Khankandi, Shahrokh & Bolbot, Victor & BahooToroody, Ahmad & Goerlandt, Floris, 2025. "A systems-theoretic approach using association rule mining and predictive Bayesian trend analysis to identify patterns in maritime accident causes," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
    6. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    7. Zhang, Chaobo & Xue, Xue & Zhao, Yang & Zhang, Xuejun & Li, Tingting, 2019. "An improved association rule mining-based method for revealing operational problems of building heating, ventilation and air conditioning (HVAC) systems," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Yu, Xinqiao & Yan, Da & Sun, Kaiyu & Hong, Tianzhen & Zhu, Dandan, 2016. "Comparative study of the cooling energy performance of variable refrigerant flow systems and variable air volume systems in office buildings," Applied Energy, Elsevier, vol. 183(C), pages 725-736.
    9. Du, Zhimin & Liang, Xinbin & Chen, Siliang & Li, Pengcheng & Zhu, Xu & Chen, Kang & Jin, Xinqiao, 2023. "Domain adaptation deep learning and its T-S diagnosis networks for the cross-control and cross-condition scenarios in data center HVAC systems," Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gilani, Hooman Azad & Hoseinzadeh, Siamak & Karimi, Hirou & Karimi, Ako & Hassanzadeh, Amir & Garcia, Davide Astiaso, 2021. "Performance analysis of integrated solar heat pump VRF system for the low energy building in Mediterranean island," Renewable Energy, Elsevier, vol. 174(C), pages 1006-1019.
    2. Guo, Yabin & Liu, Yaxin & Wang, Yuhua & Wang, Zhanwei & Zhang, Zheng & Xue, Puning, 2024. "Advance and prospect of machine learning based fault detection and diagnosis in air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    3. Li, Guannan & Hu, Yunpeng & Chen, Huanxin & Li, Haorong & Hu, Min & Guo, Yabin & Liu, Jiangyan & Sun, Shaobo & Sun, Miao, 2017. "Data partitioning and association mining for identifying VRF energy consumption patterns under various part loads and refrigerant charge conditions," Applied Energy, Elsevier, vol. 185(P1), pages 846-861.
    4. Guo, Yabin & Tan, Zehan & Chen, Huanxin & Li, Guannan & Wang, Jiangyu & Huang, Ronggeng & Liu, Jiangyan & Ahmad, Tanveer, 2018. "Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving," Applied Energy, Elsevier, vol. 225(C), pages 732-745.
    5. Joowook Kim & Doosam Song & Suyeon Kim & Sohyun Park & Youngjin Choi & Hyunwoo Lim, 2020. "Energy-Saving Potential of Extending Temperature Set-Points in a VRF Air-Conditioned Building," Energies, MDPI, vol. 13(9), pages 1-17, May.
    6. Cui, Jia & Fu, Tianhe & Yang, Junyou & Wang, Shunjiang & Li, Chaoran & Han, Ni & Zhang, Ximing, 2025. "An active early warning method for abnormal electricity load consumption based on data multi-dimensional feature," Energy, Elsevier, vol. 314(C).
    7. Carolina Rodriguez & María Coronado & Marta D’Alessandro & Juan Medina, 2019. "The Importance of Standardised Data-Collection Methods in the Improvement of Thermal Comfort Assessment Models for Developing Countries in the Tropics," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    8. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Yang, Rue & Ke, Jiaona & Di, Xin & Liu, Feng & Zhang, Wenbo & Wang, Chengyu, 2018. "Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage," Applied Energy, Elsevier, vol. 212(C), pages 455-464.
    9. Ebrahim Morady & Madjid Soltani & Farshad Moradi Kashkooli & Masoud Ziabasharhagh & Armughan Al-Haq & Jatin Nathwani, 2022. "Improving Energy Efficiency by Utilizing Wetted Cellulose Pads in Passive Cooling Systems," Energies, MDPI, vol. 15(1), pages 1-17, January.
    10. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    11. Yan, Huaxia & Pan, Yan & Li, Zhao & Deng, Shiming, 2018. "Further development of a thermal comfort based fuzzy logic controller for a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 219(C), pages 312-324.
    12. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    13. Mukhtar, A. & Ng, K.C. & Yusoff, M.Z., 2018. "Design optimization for ventilation shafts of naturally-ventilated underground shelters for improvement of ventilation rate and thermal comfort," Renewable Energy, Elsevier, vol. 115(C), pages 183-198.
    14. Girish Rentala & Yimin Zhu & Neil M. Johannsen, 2021. "Impact of Outdoor Temperature Variations on Thermal State in Experiments Using Immersive Virtual Environment," Sustainability, MDPI, vol. 13(19), pages 1-36, September.
    15. Melendez, Kevin A. & Matamala, Yolanda, 2025. "Adversarial attacks in demand-side electricity markets," Applied Energy, Elsevier, vol. 377(PD).
    16. Balali, Amirhossein & Yunusa-Kaltungo, Akilu, 2025. "Selection of passive energy consumption optimisation strategies for buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    17. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    18. Baglivo, Cristina & Congedo, Paolo Maria & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate," Energy, Elsevier, vol. 83(C), pages 560-575.
    19. Małgorzata Fedorczak-Cisak & Katarzyna Nowak & Marcin Furtak, 2019. "Analysis of the Effect of Using External Venetian Blinds on the Thermal Comfort of Users of Highly Glazed Office Rooms in a Transition Season of Temperate Climate—Case Study," Energies, MDPI, vol. 13(1), pages 1-18, December.
    20. Pikas, Ergo & Thalfeldt, Martin & Kurnitski, Jarek & Liias, Roode, 2015. "Extra cost analyses of two apartment buildings for achieving nearly zero and low energy buildings," Energy, Elsevier, vol. 84(C), pages 623-633.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:20:p:8974-:d:1767984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.