IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i1p336-d1560299.html
   My bibliography  Save this article

Should Charging Stations Provide Service for Plug-In Hybrid Electric Vehicles During Holidays?

Author

Listed:
  • Tianhua Zhang

    (College of Business Administration, Capital University of Economics and Business, Beijing 100070, China)

  • Xin Li

    (School of Management Engineering, Shandong Jianzhu University, Jinan 250101, China)

  • Yiwen Zhang

    (College of Business Administration, Capital University of Economics and Business, Beijing 100070, China)

  • Chenhui Shu

    (China Unicom Digital Technology Corporation, Ltd., Beijing 100032, China)

Abstract

The development of the new energy vehicle (NEV) market in China has promoted the sustainability of the automotive industry, but has also brought pressures to NEV charging infrastructure. This paper aims to determine the strategic role of charging stations, particularly on whether they should provide service for plug-in hybrid electric vehicles (PHEVs) in the highway service area during peak holidays. Firstly, the charging service resource allocation for a charging station that provides services for both electronic vehicles (EVs) and PHEVs is studied. Secondly, different queueing disciplines are compared. At last, a comparison between scenarios where charging services are limited to EVs and those where services extend to both EVs and PHEVs is conducted. A queueing system considering customer balking and reneging is developed. The impacts of parameters, such as the NEV arrival rate and patience degree of different NEV drivers, on the optimal allocation plan, profit, and comparison results are discussed. The main conclusions are as follows: (1) If the EV arrival rate is greater than the charging service rate, the charging station should not provide charging services for PHEVs. Providing service only for EVs derives more revenues and profits and results in a shorter waiting queue. Conversely, if the total arrival rate of NEVs (including EVs and PHEVs) is lower than the charging service rate, then the charging station should also serve PHEVs. (2) If providing service for PHEVs, a mixed queueing discipline should be applied when the total arrival rate approximates the service rate. When the total NEV arrival rate is significantly lower than the charging service rate, the separate queueing discipline should be adopted. (3) When applying a separate queueing discipline, if a certain type of NEV has a higher arrival rate and the drivers exhibit greater patience, then more charging resources should be allocated to this type of NEV. If the charging service is less busy, the more patient the drivers are, the less service resources should be allocated to them, whereas, during peak times, the more patient the drivers are, the more service resources should be allocated to them.

Suggested Citation

  • Tianhua Zhang & Xin Li & Yiwen Zhang & Chenhui Shu, 2025. "Should Charging Stations Provide Service for Plug-In Hybrid Electric Vehicles During Holidays?," Sustainability, MDPI, vol. 17(1), pages 1-21, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:1:p:336-:d:1560299
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/1/336/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/1/336/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tao Yi & Xiao-bin Cheng & Hao Zheng & Jin-peng Liu, 2019. "Research on Location and Capacity Optimization Method for Electric Vehicle Charging Stations Considering User’s Comprehensive Satisfaction," Energies, MDPI, vol. 12(10), pages 1-17, May.
    2. Wu, Yan & Aziz, Syed Mahfuzul & Haque, Mohammed H., 2023. "Techno-economic modelling for energy cost minimisation of a university campus to support electric vehicle charging with photovoltaic capacity optimisation," Renewable Energy, Elsevier, vol. 219(P1).
    3. Wu, Xiaomei & Feng, Qijin & Bai, Chenchen & Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei, 2021. "A novel fast-charging stations locational planning model for electric bus transit system," Energy, Elsevier, vol. 224(C).
    4. Pourvaziri, H. & Sarhadi, H. & Azad, N. & Afshari, H. & Taghavi, M., 2024. "Planning of electric vehicle charging stations: An integrated deep learning and queueing theory approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    5. Yin, Wanjun & Ji, Jianbo & Qin, Xuan, 2023. "Study on optimal configuration of EV charging stations based on second-order cone," Energy, Elsevier, vol. 284(C).
    6. Bolong Yun & Daniel (Jian) Sun & Yingjie Zhang & Siwen Deng & Jing Xiong, 2019. "A Charging Location Choice Model for Plug-In Hybrid Electric Vehicle Users," Sustainability, MDPI, vol. 11(20), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chengsi Li & Shu Zhang & Weijie Ling & Liquan Zhao & Younghwan Pan, 2024. "Enhancing User Experience in Electric Vehicle Charging Applications (EVCA): A Comprehensive Analysis in the Chinese Context," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(4), pages 18495-18530, December.
    2. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    3. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    4. Boyu Xiang & Zhengyang Zhou & Shukun Gao & Guoping Lei & Zefu Tan, 2024. "A Planning Method for Charging Station Based on Long-Term Charging Load Forecasting of Electric Vehicles," Energies, MDPI, vol. 17(24), pages 1-20, December.
    5. Hong Gao & Kai Liu & Xinchao Peng & Cheng Li, 2020. "Optimal Location of Fast Charging Stations for Mixed Traffic of Electric Vehicles and Gasoline Vehicles Subject to Elastic Demands," Energies, MDPI, vol. 13(8), pages 1-16, April.
    6. Mohamed Abdel-Basset & Abduallah Gamal & Ibrahim M. Hezam & Karam M. Sallam, 2024. "Sustainability assessment of optimal location of electric vehicle charge stations: a conceptual framework for green energy into smart cities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 11475-11513, May.
    7. Ozan Gül, 2025. "Dynamic Load Flow in Modern Power Systems: Renewables, Crypto Mining, and Electric Vehicles," Sustainability, MDPI, vol. 17(6), pages 1-24, March.
    8. Pourvaziri, H. & Sarhadi, H. & Azad, N. & Afshari, H. & Taghavi, M., 2024. "Planning of electric vehicle charging stations: An integrated deep learning and queueing theory approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    9. Yi, Tao & Cheng, Xiaobin & Chen, Yaxuan & Liu, Jinpeng, 2020. "Joint optimization of charging station and energy storage economic capacity based on the effect of alternative energy storage of electric vehicle," Energy, Elsevier, vol. 208(C).
    10. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    11. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    12. Kumar, Gokula Manikandan Senthil & Guo, Xinman & Zhou, Shijie & Luo, Haojie & Wu, Qi & Liu, Yulin & Dou, Zhenyu & Pan, Kai & Xu, Yang & Yang, Hongxing & Cao, Sunliang, 2025. "State-of-the-art review of smart energy management systems for supporting zero-emission electric vehicles with X2V and V2X interactions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    13. Yi, Tao & Cheng, Xiaobin & Peng, Peng, 2022. "Two-stage optimal allocation of charging stations based on spatiotemporal complementarity and demand response: A framework based on MCS and DBPSO," Energy, Elsevier, vol. 239(PC).
    14. Ahmed Foda & Moataz Mohamed & Hany Farag & Ehab El-Saadany, 2023. "A resilient battery electric bus transit system configuration," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Lai, Chun Sing & Chen, Dashen & Zhang, Jinning & Zhang, Xin & Xu, Xu & Taylor, Gareth A. & Lai, Loi Lei, 2022. "Profit maximization for large-scale energy storage systems to enable fast EV charging infrastructure in distribution networks," Energy, Elsevier, vol. 259(C).
    16. Yuan Liu & Yamin Ding & Pei Jiang & Xugang Jin & Xinlin Wu & Zhanji Zheng, 2024. "Joint Optimal Design of Electric Bus Service and Charging Facilities," Sustainability, MDPI, vol. 16(14), pages 1-16, July.
    17. Emmanuel Asane-Otoo & Bernhard C. Dannemann & Thies Reisemann, 2025. "Spatial Distribution of EV Charging Infrastructure in Germany: An Analysis of Determinants," Working Papers V-450-25, University of Oldenburg, Department of Economics, revised Mar 2025.
    18. Wang, Ning & Tian, Hangqi & Wu, Huahua & Liu, Qiaoqian & Luan, Jie & Li, Yuan, 2023. "Cost-oriented optimization of the location and capacity of charging stations for the electric Robotaxi fleet," Energy, Elsevier, vol. 263(PC).
    19. Hatem Abdelaty & Ahmed Foda & Moataz Mohamed, 2023. "The Robustness of Battery Electric Bus Transit Networks under Charging Infrastructure Disruptions," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
    20. Bálint Csonka, 2021. "Optimization of Static and Dynamic Charging Infrastructure for Electric Buses," Energies, MDPI, vol. 14(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:1:p:336-:d:1560299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.