Author
Listed:
- Arokiaraj A. Amalan
(Department of Media Sciences, Anna University, Chennai 600025, India)
- I. Arul Aram
(Department of Media Sciences, Anna University, Chennai 600025, India)
Abstract
Artificial Intelligence (AI) holds significant potential to enhance sustainable non-chemical agricultural methods (NCAM) by optimising resource management, automating precision farming practices, and strengthening climate resilience. However, its widespread adoption among farmers’ remains limited due to socio-economic, infrastructural, and justice-related challenges. This study investigates AI adoption among NCAM farmers using an Integrated Mechanism for Sustainable Practices (IMSP) conceptual framework which combines the Technology Acceptance Model (TAM) with a justice-centred approach. A mixed-methods design was employed, incorporating Fuzzy-Set Qualitative Comparative Analysis (fsQCA) of AI adoption pathways based on survey data, alongside critical discourse analysis of thematic farmers narrative through a justice-centred lens. The study was conducted in Tamil Nadu between 30 September and 25 October 2024. Using purposive sampling, 57 NCAM farmers were organised into three focus groups: marginal farmers, active NCAM practitioners, and farmers from 18 districts interested in agricultural technologies and AI. This enabled an in-depth exploration of practices, adoption, and perceptions. The findings indicates that while factors such as labour shortages, mobile technology use, and cost efficiencies are necessary for AI adoption, they are insufficient without supportive extension services and inclusive communication strategies. The study refines the TAM framework by embedding economic, cultural, and political justice considerations, thereby offering a more holistic understanding of technology acceptance in sustainable agriculture. By bridging discourse analysis and fsQCA, this research underscores the need for justice-centred AI solutions tailored to diverse farming contexts. The study contributes to advancing sustainable agriculture, digital inclusion, and resilience, thereby supporting the United Nations’ Sustainable Development Goals (SDGs).
Suggested Citation
Arokiaraj A. Amalan & I. Arul Aram, 2025.
"Artificial Intelligence Adoption in Non-Chemical Agriculture: An Integrated Mechanism for Sustainable Practices,"
Sustainability, MDPI, vol. 17(19), pages 1-27, October.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:19:p:8865-:d:1764740
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8865-:d:1764740. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.