IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i18p8228-d1748469.html
   My bibliography  Save this article

Soil Analytical Capabilities for Sustainable Land Management Across National Soil Services in the Mediterranean

Author

Listed:
  • Areej Al-Khreisat

    (School of Agriculture, Department of Land, Water and Environment, The University of Jordan, Amman 11942, Jordan)

  • Jawad Al-Bakri

    (School of Agriculture, Department of Land, Water and Environment, The University of Jordan, Amman 11942, Jordan)

  • Mais Atiyat

    (School of Agriculture, Department of Land, Water and Environment, The University of Jordan, Amman 11942, Jordan)

  • Muhammad Rasool Al-Kilani

    (School of Agriculture, Department of Land, Water and Environment, The University of Jordan, Amman 11942, Jordan
    School of Natural Resources Engineering & Management, Department of Civil & Environmental Engineering, German Jordanian University, Amman 11180, Jordan)

  • Ibrahim Farhan

    (School of Arts, Department of Geography, The University of Jordan, Amman 11942, Jordan)

  • Claudio Zucca

    (Department of Agricultural Sciences and Centre for Sustainable Management of Soil and Landscape (SMSL), University of Sassari (Italy), Viale Italia 39, 07100 Sassari, Italy)

  • Wala Khudairat

    (School of Agriculture, Department of Land, Water and Environment, The University of Jordan, Amman 11942, Jordan)

Abstract

Soil monitoring is essential for pursuing several sustainable development goals including ‘Zero Hunger’ and ‘Life on Land’. This study examined the status of national soil monitoring laboratories in Mediterranean countries through a multi-country survey to assess strengths and gaps. The results showed that most national soil labs performed basic tests related to soil health and agricultural management, such as texture, pH, and nutrient analysis. However, fewer labs performed more specific tests that are also relevant to these applications such as compaction and biological analysis. Furthermore, tests required for assessing soil pollution, such as heavy metals, were conducted only by few labs. This was mostly due to a lack of equipment like atomic absorption spectrometers. In total, 75% of labs reported good quality of the instruments and frequent calibration. The staff were generally well qualified, with most holding graduate degrees, and women comprised 58% of the staff. Many national services started using electronic reports and provided result interpretation for end users, but not all used lab information systems. The findings highlight the need for better equipment, more advanced testing, and stronger digital management systems. Addressing these issues will help harmonize soil data and support sustainable land management and agriculture in the region.

Suggested Citation

  • Areej Al-Khreisat & Jawad Al-Bakri & Mais Atiyat & Muhammad Rasool Al-Kilani & Ibrahim Farhan & Claudio Zucca & Wala Khudairat, 2025. "Soil Analytical Capabilities for Sustainable Land Management Across National Soil Services in the Mediterranean," Sustainability, MDPI, vol. 17(18), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8228-:d:1748469
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/18/8228/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/18/8228/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamouda, Fatma & Puig-Sirera, Àngela & Bonzi, Lorenzo & Remorini, Damiano & Massai, Rossano & Rallo, Giovanni, 2024. "Design and validation of a soil moisture-based wireless sensors network for the smart irrigation of a pear orchard," Agricultural Water Management, Elsevier, vol. 305(C).
    2. Xin Zhang & Eric A. Davidson & Denise L. Mauzerall & Timothy D. Searchinger & Patrice Dumas & Ye Shen, 2015. "Managing nitrogen for sustainable development," Nature, Nature, vol. 528(7580), pages 51-59, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianyi Qiu & Yu Shi & Josep Peñuelas & Ji Liu & Qingliang Cui & Jordi Sardans & Feng Zhou & Longlong Xia & Weiming Yan & Shuling Zhao & Shushi Peng & Jinshi Jian & Qinsi He & Wenju Zhang & Min Huang &, 2024. "Optimizing cover crop practices as a sustainable solution for global agroecosystem services," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Alexander C. Abajian & Tamma Carleton & Kyle C. Meng & Olivier Deschênes, 2025. "Quantifying the global climate feedback from energy-based adaptation," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    3. Qiuju Wang & Xuanxuan Gao & Baoguang Wu & Jingyang Li & Xin Liu & Jiahe Zou & Qingying Meng, 2025. "Fertility-Based Nitrogen Management Strategies Combined with Straw Return Enhance Rice Yield and Soil Quality in Albic Soils," Agriculture, MDPI, vol. 15(18), pages 1-24, September.
    4. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    5. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    6. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    7. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    8. Jiamin Liu & Xiaoyu Ma & Bin Zhao & Qi Cui & Sisi Zhang & Jiaoning Zhang, 2023. "Mandatory Environmental Regulation, Enterprise Labor Demand and Green Innovation Transformation: A Quasi-Experiment from China’s New Environmental Protection Law," Sustainability, MDPI, vol. 15(14), pages 1-31, July.
    9. Otavio Ananias Pereira da Silva & Dayane Bortoloto da Silva & Marcelo Carvalho Minhoto Teixeira-Filho & Tays Batista Silva & Cid Naudi Silva Campos & Fabio Henrique Rojo Baio & Gileno Brito de Azevedo, 2023. "Macro- and Micronutrient Contents and Their Relationship with Growth in Six Eucalyptus Species," Sustainability, MDPI, vol. 15(22), pages 1-12, November.
    10. David I. Stern, 2017. "The environmental Kuznets curve after 25 years," Journal of Bioeconomics, Springer, vol. 19(1), pages 7-28, April.
    11. Anna Lungarska & Thierry Brunelle & Raja Chakir & Pierre‐Alain Jayet & Rémi Prudhomme & Stéphane De Cara & Jean‐Christophe Bureau, 2023. "Halving mineral nitrogen use in European agriculture: Insights from multi‐scale land‐use models," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(3), pages 1529-1550, September.
    12. Jiuliang Xu & Liangquan Wu & Bingxin Tong & Jiaxu Yin & Zican Huang & Wei Li & Xuexian Li, 2021. "Magnesium Supplementation Alters Leaf Metabolic Pathways for Higher Flavor Quality of Oolong Tea," Agriculture, MDPI, vol. 11(2), pages 1-12, February.
    13. Agnieszka Sobolewska & Marcin Bukowski, 2025. "Consumption of Nitrogen Fertilizers in the EU—External Costs of Their Production by Country of Application," Agriculture, MDPI, vol. 15(3), pages 1-18, January.
    14. Wen, Shenglin & Cui, Ningbo & Wang, Yaosheng & Gong, Daozhi & Xing, Liwen & Wu, Zongjun & Zhang, Yixuan & Wang, Zhihui, 2024. "Determining effect of fertilization on reactive nitrogen losses through nitrate leaching and key influencing factors in Chinese agricultural systems," Agricultural Water Management, Elsevier, vol. 303(C).
    15. Jun Li & Jiali Xing & Rui Ding & Wenjiao Shi & Xiaoli Shi & Xiaoqing Wang, 2023. "Systematic Evaluation of Nitrogen Application in the Production of Multiple Crops and Its Environmental Impacts in Fujian Province, China," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    16. Junfeng Dai & Linyan Pan & Yan Deng & Zupeng Wan & Rui Xia, 2025. "Modified SWAT Model for Agricultural Watershed in Karst Area of Southwest China," Agriculture, MDPI, vol. 15(2), pages 1-18, January.
    17. Qian Wu & Chencheng Dai & Fanxu Meng & Yan Jiao & Zhichuan J. Xu, 2024. "Potential and electric double-layer effect in electrocatalytic urea synthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Purushothaman Chirakkuzhyil Abhilash, 2021. "Restoring the Unrestored: Strategies for Restoring Global Land during the UN Decade on Ecosystem Restoration (UN-DER)," Land, MDPI, vol. 10(2), pages 1-19, February.
    19. Madhu Khanna & Shady S. Atallah & Saurajyoti Kar & Bijay Sharma & Linghui Wu & Chengzheng Yu & Girish Chowdhary & Chinmay Soman & Kaiyu Guan, 2022. "Digital transformation for a sustainable agriculture in the United States: Opportunities and challenges," Agricultural Economics, International Association of Agricultural Economists, vol. 53(6), pages 924-937, November.
    20. Wang, Mengru & Ma, Lin & Strokal, Maryna & Chu, Yanan & Kroeze, Carolien, 2018. "Exploring nutrient management options to increase nitrogen and phosphorus use efficiencies in food production of China," Agricultural Systems, Elsevier, vol. 163(C), pages 58-72.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8228-:d:1748469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.