IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i17p8063-d1744247.html
   My bibliography  Save this article

A Sustainability Assessment of a Blockchain-Secured Solar Energy Logger for Edge IoT Environments

Author

Listed:
  • Javad Vasheghani Farahani

    (School of International Management, Modul University Vienna, 1190 Vienna, Austria)

  • Horst Treiblmaier

    (School of International Management, Modul University Vienna, 1190 Vienna, Austria)

Abstract

In this paper, we design, implement, and empirically evaluate a tamper-evident, blockchain-secured solar energy logging system for resource-constrained edge Internet of Things (IoT) devices. Using a Merkle tree batching approach in conjunction with threshold-triggered blockchain anchoring, the system combines high-frequency local logging with energy-efficient, cryptographically verifiable submissions to the Ethereum Sepolia testnet, a public Proof-of-Stake (PoS) blockchain. The logger captured and hashed cryptographic chains on a minute-by-minute basis during a continuous 135 h deployment on a Raspberry Pi equipped with an INA219 sensor. Thanks to effective retrial and daily rollover mechanisms, it committed 130 verified Merkle batches to the blockchain without any data loss or unverifiable records, even during internet outages. The system offers robust end-to-end auditability and tamper resistance with low operational and carbon overhead, which was tested with comparative benchmarking against other blockchain logging models and conventional local and cloud-based loggers. The findings illustrate the technical and sustainability feasibility of digital audit trails based on blockchain technology for distributed solar energy systems. These audit trails facilitate scalable environmental, social, and governance (ESG) reporting, automated renewable energy certification, and transparent carbon accounting.

Suggested Citation

  • Javad Vasheghani Farahani & Horst Treiblmaier, 2025. "A Sustainability Assessment of a Blockchain-Secured Solar Energy Logger for Edge IoT Environments," Sustainability, MDPI, vol. 17(17), pages 1-31, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:8063-:d:1744247
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/17/8063/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/17/8063/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:8063-:d:1744247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.