IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4797-d1174383.html
   My bibliography  Save this article

Smart Contract Design in Distributed Energy Systems: A Systematic Review

Author

Listed:
  • Kimia Honari

    (Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada)

  • Sara Rouhani

    (Department of Computer Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada)

  • Nida E. Falak

    (Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada)

  • Yuan Liu

    (Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada)

  • Yunwei Li

    (Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada)

  • Hao Liang

    (Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada)

  • Scott Dick

    (Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada)

  • James Miller

    (Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada)

Abstract

Blockchain technology and, in particular, smart contracts based on it, offers a new, decentralized mechanism for entering into and fulfilling contracts in diverse markets. Energy markets are no exception, and indeed, the decentralized nature of the blockchain may be particularly important for them as the penetration of residential prosumers offering microgeneration to the grid grows. At this time, however, the literature on smart contracts in energy markets—and particularly their interaction with the technical infrastructure of the smart grid—is limited and scattered. There is a need to consolidate these studies into a comprehensive understanding of the state-of-the-art in smart contract design for the smart grid. However, no existing reviews focus on smart contracts in energy systems. The scope of our study is the role of smart contracts in energy systems and what limitations they encounter. We conduct a systematic review of this topic, focusing on systems that have been implemented as prototypes. These studies provide key evidence on the scalability of smart contracts for energy systems and their interaction with the technical elements of the smart grid. We selected a pool of 76 papers meeting our criteria, with three others excluded for misinterpreting fundamental aspects of blockchains and smart contracts. After reviewing each paper, we found that this literature falls into four categories: market operations, ancillary services, auditing and monitoring, and cybersecurity. We then identify and examine the cross-cutting concerns of data storage in and interoperability between blockchains. We finally discuss the implications of our findings for future research. In particular, there is likely to be a complex interplay between the data generated and stored via the blockchain versus the data required to meet energy system reliability targets and market obligations for participants.

Suggested Citation

  • Kimia Honari & Sara Rouhani & Nida E. Falak & Yuan Liu & Yunwei Li & Hao Liang & Scott Dick & James Miller, 2023. "Smart Contract Design in Distributed Energy Systems: A Systematic Review," Energies, MDPI, vol. 16(12), pages 1-28, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4797-:d:1174383
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4797/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4797/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han, Dong & Zhang, Chengzhenghao & Ping, Jian & Yan, Zheng, 2020. "Smart contract architecture for decentralized energy trading and management based on blockchains," Energy, Elsevier, vol. 199(C).
    2. Lee Thomas & Yue Zhou & Chao Long & Jianzhong Wu & Nick Jenkins, 2019. "A general form of smart contract for decentralized energy systems management," Nature Energy, Nature, vol. 4(2), pages 140-149, February.
    3. Juhar Abdella & Khaled Shuaib, 2018. "Peer to Peer Distributed Energy Trading in Smart Grids: A Survey," Energies, MDPI, vol. 11(6), pages 1-22, June.
    4. Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
    5. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    6. Li, Yinan & Yang, Wentao & He, Ping & Chen, Chang & Wang, Xiaonan, 2019. "Design and management of a distributed hybrid energy system through smart contract and blockchain," Applied Energy, Elsevier, vol. 248(C), pages 390-405.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirli, Desen & Couraud, Benoit & Robu, Valentin & Salgado-Bravo, Marcelo & Norbu, Sonam & Andoni, Merlinda & Antonopoulos, Ioannis & Negrete-Pincetic, Matias & Flynn, David & Kiprakis, Aristides, 2022. "Smart contracts in energy systems: A systematic review of fundamental approaches and implementations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    3. Gourisetti, Sri Nikhil Gupta & Sebastian-Cardenas, D. Jonathan & Bhattarai, Bishnu & Wang, Peng & Widergren, Steve & Borkum, Mark & Randall, Alysha, 2021. "Blockchain smart contract reference framework and program logic architecture for transactive energy systems," Applied Energy, Elsevier, vol. 304(C).
    4. Uyikumhe Damisa & Nnamdi I. Nwulu & Pierluigi Siano, 2022. "Towards Blockchain-Based Energy Trading: A Smart Contract Implementation of Energy Double Auction and Spinning Reserve Trading," Energies, MDPI, vol. 15(11), pages 1-16, June.
    5. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    6. Paiho, Satu & Kiljander, Jussi & Sarala, Roope & Siikavirta, Hanne & Kilkki, Olli & Bajpai, Arpit & Duchon, Markus & Pahl, Marc-Oliver & Wüstrich, Lars & Lübben, Christian & Kirdan, Erkin & Schindler,, 2021. "Towards cross-commodity energy-sharing communities – A review of the market, regulatory, and technical situation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Mehdinejad, Mehdi & Shayanfar, Heidarali & Mohammadi-Ivatloo, Behnam, 2022. "Decentralized blockchain-based peer-to-peer energy-backed token trading for active prosumers," Energy, Elsevier, vol. 244(PA).
    8. Uyikumhe Damisa & Peter Olabisi Oluseyi & Nnamdi Ikechi Nwulu, 2022. "Blockchain-Based Gas Auctioning Coupled with a Novel Economic Dispatch Formulation for Gas-Deficient Thermal Plants," Energies, MDPI, vol. 15(14), pages 1-13, July.
    9. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    10. Uyikumhe Damisa & Nnamdi I. Nwulu, 2022. "Blockchain-Based Auctioning for Energy Storage Sharing in a Smart Community," Energies, MDPI, vol. 15(6), pages 1-12, March.
    11. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).
    12. Tsao, Yu-Chung & Thanh, Vo-Van, 2021. "Toward sustainable microgrids with blockchain technology-based peer-to-peer energy trading mechanism: A fuzzy meta-heuristic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    13. Tseng, Fang-Mei & Palma Gil, Eunice Ina N. & Lu, Louis Y.Y., 2021. "Developmental trajectories of blockchain research and its major subfields," Technology in Society, Elsevier, vol. 66(C).
    14. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    15. Alessandra Chiarini & Lorenzo Compagnucci, 2022. "Blockchain, Data Protection and P2P Energy Trading: A Review on Legal and Economic Challenges," Sustainability, MDPI, vol. 14(23), pages 1-20, December.
    16. Hamzah Khan & Tariq Masood, 2022. "Impact of Blockchain Technology on Smart Grids," Energies, MDPI, vol. 15(19), pages 1-27, September.
    17. Wang, Longze & Liu, Jinxin & Yuan, Rongfang & Wu, Jing & Zhang, Delong & Zhang, Yan & Li, Meicheng, 2020. "Adaptive bidding strategy for real-time energy management in multi-energy market enhanced by blockchain," Applied Energy, Elsevier, vol. 279(C).
    18. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    19. Umar, Abdullah & Kumar, Deepak & Ghose, Tirthadip, 2022. "Blockchain-based decentralized energy intra-trading with battery storage flexibility in a community microgrid system," Applied Energy, Elsevier, vol. 322(C).
    20. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4797-:d:1174383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.