IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v4y2019i2d10.1038_s41560-018-0317-7.html
   My bibliography  Save this article

A general form of smart contract for decentralized energy systems management

Author

Listed:
  • Lee Thomas

    (Cardiff University)

  • Yue Zhou

    (Cardiff University)

  • Chao Long

    (Cardiff University)

  • Jianzhong Wu

    (Cardiff University)

  • Nick Jenkins

    (Cardiff University)

Abstract

Smart contract platforms have the potential to allow shared automatic control of energy transfer within networks in a replicable, secure, verifiable and trustworthy way. Here we present a general form of smart contract which captures the elements needed for shared control that will help formalize decentralization. Two mechanisms were defined for agreement of control instructions for a medium-voltage direct-current (MVDC) link connecting two separately operated 33 kV distribution networks. These were instantiated as smart contracts and were evaluated in terms of cost and the computational requirements for their execution. Real network and converter data from the ANGLE-DC demonstration project were used to model the MVDC link. We demonstrate that using smart contracts to agree control instructions between different parties is feasible. The potential for shared control using smart contracts gives operators and regulators a way of defining and decentralizing operating responsibilities within energy systems.

Suggested Citation

  • Lee Thomas & Yue Zhou & Chao Long & Jianzhong Wu & Nick Jenkins, 2019. "A general form of smart contract for decentralized energy systems management," Nature Energy, Nature, vol. 4(2), pages 140-149, February.
  • Handle: RePEc:nat:natene:v:4:y:2019:i:2:d:10.1038_s41560-018-0317-7
    DOI: 10.1038/s41560-018-0317-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-018-0317-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-018-0317-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Umar, Abdullah & Kumar, Deepak & Ghose, Tirthadip, 2022. "Blockchain-based decentralized energy intra-trading with battery storage flexibility in a community microgrid system," Applied Energy, Elsevier, vol. 322(C).
    2. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    3. Hua, Weiqi & Chen, Ying & Qadrdan, Meysam & Jiang, Jing & Sun, Hongjian & Wu, Jianzhong, 2022. "Applications of blockchain and artificial intelligence technologies for enabling prosumers in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Bing Wang & Weiyang Liu & Min Wang & Wangping Shen, 2020. "Research on Bidding Mechanism for Power Grid with Electric Vehicles Based on Smart Contract Technology," Energies, MDPI, vol. 13(2), pages 1-17, January.
    5. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    6. Jing, Rui & Xie, Mei Na & Wang, Feng Xiang & Chen, Long Xiang, 2020. "Fair P2P energy trading between residential and commercial multi-energy systems enabling integrated demand-side management," Applied Energy, Elsevier, vol. 262(C).
    7. Ahl, Amanda & Goto, Mika & Yarime, Masaru & Tanaka, Kenji & Sagawa, Daishi, 2022. "Challenges and opportunities of blockchain energy applications: Interrelatedness among technological, economic, social, environmental, and institutional dimensions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    8. Sun, Wenqiang & Wang, Qiang & Zhou, Yue & Wu, Jianzhong, 2020. "Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives," Applied Energy, Elsevier, vol. 268(C).
    9. Guo, Qiaozhen & He, Qiao-Chu & Chen, Ying-Ju & Huang, Wei, 2021. "Poverty mitigation via solar panel adoption: Smart contracts and targeted subsidy design," Omega, Elsevier, vol. 102(C).
    10. Kirli, Desen & Couraud, Benoit & Robu, Valentin & Salgado-Bravo, Marcelo & Norbu, Sonam & Andoni, Merlinda & Antonopoulos, Ioannis & Negrete-Pincetic, Matias & Flynn, David & Kiprakis, Aristides, 2022. "Smart contracts in energy systems: A systematic review of fundamental approaches and implementations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Kimia Honari & Sara Rouhani & Nida E. Falak & Yuan Liu & Yunwei Li & Hao Liang & Scott Dick & James Miller, 2023. "Smart Contract Design in Distributed Energy Systems: A Systematic Review," Energies, MDPI, vol. 16(12), pages 1-28, June.
    12. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).
    13. Wang, Hao-ran & Feng, Tian-tian & Xiong, Wei, 2022. "How can the dynamic game be integrated into blockchain-based distributed energy resources multi-agent transactions for decision-making?," Energy, Elsevier, vol. 254(PB).
    14. Mehdinejad, Mehdi & Shayanfar, Heidarali & Mohammadi-Ivatloo, Behnam, 2022. "Decentralized blockchain-based peer-to-peer energy-backed token trading for active prosumers," Energy, Elsevier, vol. 244(PA).
    15. Hua, Weiqi & Jiang, Jing & Sun, Hongjian & Teng, Fei & Strbac, Goran, 2022. "Consumer-centric decarbonization framework using Stackelberg game and Blockchain," Applied Energy, Elsevier, vol. 309(C).
    16. Gourisetti, Sri Nikhil Gupta & Sebastian-Cardenas, D. Jonathan & Bhattarai, Bishnu & Wang, Peng & Widergren, Steve & Borkum, Mark & Randall, Alysha, 2021. "Blockchain smart contract reference framework and program logic architecture for transactive energy systems," Applied Energy, Elsevier, vol. 304(C).
    17. Hamzah Khan & Tariq Masood, 2022. "Impact of Blockchain Technology on Smart Grids," Energies, MDPI, vol. 15(19), pages 1-27, September.
    18. Jin, Xiaolong & Wu, Qiuwei & Jia, Hongjie, 2020. "Local flexibility markets: Literature review on concepts, models and clearing methods," Applied Energy, Elsevier, vol. 261(C).
    19. Han, Dong & Zhang, Chengzhenghao & Ping, Jian & Yan, Zheng, 2020. "Smart contract architecture for decentralized energy trading and management based on blockchains," Energy, Elsevier, vol. 199(C).
    20. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K., 2020. "Investigating the impact of P2P trading on power losses in grid-connected networks with prosumers," Applied Energy, Elsevier, vol. 263(C).
    21. Ahmed Idries & John Krogstie & Jayaprakash Rajasekharan, 2022. "Dynamic Capabilities in Electrical Energy Digitalization: A Case from the Norwegian Ecosystem," Energies, MDPI, vol. 15(22), pages 1-25, November.
    22. Hua, Weiqi & Jiang, Jing & Sun, Hongjian & Wu, Jianzhong, 2020. "A blockchain based peer-to-peer trading framework integrating energy and carbon markets," Applied Energy, Elsevier, vol. 279(C).
    23. Rameez Asif & Syed Raheel Hassan & Gerard Parr, 2023. "Integrating a Blockchain-Based Governance Framework for Responsible AI," Future Internet, MDPI, vol. 15(3), pages 1-21, February.
    24. Tanus Bikram Malla & Abhinav Bhattarai & Amrit Parajuli & Ashish Shrestha & Bhupendra Bimal Chhetri & Kamal Chapagain, 2022. "Status, Challenges and Future Directions of Blockchain Technology in Power System: A State of Art Review," Energies, MDPI, vol. 15(22), pages 1-26, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:4:y:2019:i:2:d:10.1038_s41560-018-0317-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.