IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i15p7159-d1719686.html
   My bibliography  Save this article

The First Thirty Years of Green Stormwater Infrastructure in Portland, Oregon

Author

Listed:
  • Michaela Koucka

    (Faculty of Architecture, Czech Technical University, 160 00 Prague, Czech Republic)

  • Cara Poor

    (Shiley School of Engineering, University of Portland, Portland, OR 97203, USA)

  • Jordyn Wolfand

    (Shiley School of Engineering, University of Portland, Portland, OR 97203, USA)

  • Heejun Chang

    (Department of Geography, Portland State University, Portland, OR 97201, USA)

  • Vivek Shandas

    (Toulan School of Urban Studies and Planning, Portland State University, Portland, OR 97207, USA)

  • Adrienne Aiona

    (City of Portland Bureau of Environmental Services, Portland, OR 97204, USA)

  • Henry Stevens

    (City of Portland Bureau of Environmental Services, Portland, OR 97204, USA
    Retired.)

  • Tim Kurtz

    (City of Portland Bureau of Environmental Services, Portland, OR 97204, USA)

  • Svetlana Hedin

    (City of Portland Bureau of Environmental Services, Portland, OR 97204, USA)

  • Steve Fancher

    (City of Gresham, Gresham, OR 97030, USA)

  • Joshua Lighthipe

    (KPFF, Portland, OR 97204, USA)

  • Adam Zucker

    (Zucker Engineering, LLC, Portland, OR 97214, USA)

Abstract

Over the past 30 years, the City of Portland, Oregon, USA, has emerged as a national leader in green stormwater infrastructure (GSI). The initial impetus for implementing sustainable stormwater infrastructure in Portland stemmed from concerns about flooding and water quality in the city’s two major rivers, the Columbia and the Willamette. Heavy rainfall often led to combined sewer overflows, significantly polluting these waterways. A partial solution was the construction of “The Big Pipe” project, a large-scale stormwater containment system designed to filter and regulate overflow. However, Portland has taken a more comprehensive and long-term approach by integrating sustainable stormwater management into urban planning. Over the past three decades, the city has successfully implemented GSI to mitigate these challenges. Low-impact development strategies, such as bioswales, green streets, and permeable surfaces, have been widely adopted in streetscapes, pathways, and parking areas, enhancing both environmental resilience and urban livability. This perspective highlights the history of the implementation of Portland’s GSI programs, current design and performance standards, and challenges and lessons learned throughout Portland’s recent history. Innovative approaches to managing runoff have not only improved stormwater control but also enhanced green spaces and contributed to the city’s overall climate resilience while addressing economic well-being and social equity. Portland’s success is a result of strong policy support, effective integration of green and gray infrastructure, and active community involvement. As climate change intensifies, cities need holistic, adaptive, and community-centered approaches to urban stormwater management. Portland’s experience offers valuable insights for cities seeking to expand their GSI amid growing concerns about climate resilience, equity, and aging infrastructure.

Suggested Citation

  • Michaela Koucka & Cara Poor & Jordyn Wolfand & Heejun Chang & Vivek Shandas & Adrienne Aiona & Henry Stevens & Tim Kurtz & Svetlana Hedin & Steve Fancher & Joshua Lighthipe & Adam Zucker, 2025. "The First Thirty Years of Green Stormwater Infrastructure in Portland, Oregon," Sustainability, MDPI, vol. 17(15), pages 1-23, August.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:7159-:d:1719686
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/15/7159/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/15/7159/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Izabela Godyń & Agnieszka Grela & Krzysztof Muszyński & Justyna Pamuła, 2024. "The Impact of Green Infrastructure on the Quality of Stormwater and Environmental Risk," Sustainability, MDPI, vol. 16(19), pages 1-23, September.
    2. Liu, Wen & Chen, Weiping & Peng, Chi, 2014. "Assessing the effectiveness of green infrastructures on urban flooding reduction: A community scale study," Ecological Modelling, Elsevier, vol. 291(C), pages 6-14.
    3. Vivek Shandas & A. Marissa Matsler & Liliana Caughman & Ashley Harris, 2020. "Towards the implementation of green stormwater infrastructure: perspectives from municipal managers in the Pacific Northwest," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 63(6), pages 959-980, May.
    4. Trisha L. Moore & John S. Gulliver & Latham Stack & Michael H. Simpson, 2016. "Stormwater management and climate change: vulnerability and capacity for adaptation in urban and suburban contexts," Climatic Change, Springer, vol. 138(3), pages 491-504, October.
    5. Daniel Johnson & Judith Exl & Sylvie Geisendorf, 2021. "The Potential of Stormwater Management in Addressing the Urban Heat Island Effect: An Economic Valuation," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barah, Masoud & Khojandi, Anahita & Li, Xueping & Hathaway, Jon & Omitaomu, OluFemi, 2021. "Optimizing green infrastructure placement under precipitation uncertainty," Omega, Elsevier, vol. 100(C).
    2. Xinyu Wu & Rong Tang & Yuntao Wang, 2024. "Evaluating the cost–benefit of LID strategies for urban surface water flooding based on risk management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 10345-10364, September.
    3. Hyomin Kim & Dong-Kun Lee & Sunyong Sung, 2016. "Effect of Urban Green Spaces and Flooded Area Type on Flooding Probability," Sustainability, MDPI, vol. 8(2), pages 1-17, January.
    4. Antonios Kolimenakis & Alexandra D. Solomou & Nikolaos Proutsos & Evangelia V. Avramidou & Evangelia Korakaki & Georgios Karetsos & Georgios Maroulis & Eleftherios Papagiannis & Konstantinia Tsagkari, 2021. "The Socioeconomic Welfare of Urban Green Areas and Parks; A Literature Review of Available Evidence," Sustainability, MDPI, vol. 13(14), pages 1-26, July.
    5. Byungsun Yang & Dong Kun Lee, 2021. "Planning Strategy for the Reduction of Runoff Using Urban Green Space," Sustainability, MDPI, vol. 13(4), pages 1-13, February.
    6. Andrea I. Frank & Andrew Flynn & Nick Hacking & Christopher Silver, 2021. "More Than Open Space! The Case for Green Infrastructure Teaching in Planning Curricula," Urban Planning, Cogitatio Press, vol. 6(1), pages 63-74.
    7. Johnson, Daniel & Geisendorf, Sylvie, 2019. "Are Neighborhood-level SUDS Worth it? An Assessment of the Economic Value of Sustainable Urban Drainage System Scenarios Using Cost-Benefit Analyses," Ecological Economics, Elsevier, vol. 158(C), pages 194-205.
    8. Tanja Fluhrer & Fernando Chapa & Jochen Hack, 2021. "A Methodology for Assessing the Implementation Potential for Retrofitted and Multifunctional Urban Green Infrastructure in Public Areas of the Global South," Sustainability, MDPI, vol. 13(1), pages 1-25, January.
    9. Erica Honeck & Atte Moilanen & Benjamin Guinaudeau & Nicolas Wyler & Martin A. Schlaepfer & Pascal Martin & Arthur Sanguet & Loreto Urbina & Bertrand von Arx & Joëlle Massy & Claude Fischer & Anthony , 2020. "Implementing Green Infrastructure for the Spatial Planning of Peri-Urban Areas in Geneva, Switzerland," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    10. Karteris, Marinos & Theodoridou, Ifigeneia & Mallinis, Giorgos & Tsiros, Emmanouel & Karteris, Apostolos, 2016. "Towards a green sustainable strategy for Mediterranean cities: Assessing the benefits of large-scale green roofs implementation in Thessaloniki, Northern Greece, using environmental modelling, GIS and," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 510-525.
    11. Abdul Naser Majidi & Zoran Vojinovic & Alida Alves & Sutat Weesakul & Arlex Sanchez & Floris Boogaard & Jeroen Kluck, 2019. "Planning Nature-Based Solutions for Urban Flood Reduction and Thermal Comfort Enhancement," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    12. Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Katya Coelho & João Almeida & Fernando Castro & André Ribeiro & Tiago Teixeira & Paulo Palha & Nuno Simões, 2022. "Experimental Characterisation of Different Ecological Substrates for Use in Green Roof Systems," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    14. Tii N. Nchofoung & Simplice A. Asongu & Arsène A. Njamen Kengdo & Elvis D. Achuo, 2022. "Linear and non‐linear effects of infrastructures on inclusive human development in Africa," African Development Review, African Development Bank, vol. 34(1), pages 81-96, March.
    15. Mao, Xuhui & Jia, Haifeng & Yu, Shaw L., 2017. "Assessing the ecological benefits of aggregate LID-BMPs through modelling," Ecological Modelling, Elsevier, vol. 353(C), pages 139-149.
    16. Kichan Kim & Chang Kil Lee & Hyun Woo Kim, 2022. "Understanding the Accessibility of Urban Parks and Connectivity of Green Spaces in Single-Person Household Distribution: Case Study of Incheon, South Korea," Land, MDPI, vol. 11(9), pages 1-17, August.
    17. Joanna Dobrzańska & Adam Nadolny & Robert Kalbarczyk & Monika Ziemiańska, 2022. "Urban Resilience and Residential Greenery—The Evidence from Poland," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    18. Yi Ge & Wen Dou & Ning Liu, 2017. "Planning Resilient and Sustainable Cities: Identifying and Targeting Social Vulnerability to Climate Change," Sustainability, MDPI, vol. 9(8), pages 1-19, August.
    19. Eisenack, Klaus & Paschen, Marius, 2022. "Adapting long-lived investments under climate change uncertainty," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    20. An-Kang Liu & Qing Xu & Wen-Jin Zhu & Yang Zhang & De-Long Huang & Qing-Hai Xie & Chun-Bo Jiang & Hai-Ruo Wang, 2025. "Multi-Scale Sponge Capacity Trading and SLSQP for Stormwater Management Optimization," Sustainability, MDPI, vol. 17(10), pages 1-20, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:7159-:d:1719686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.