IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i15p6978-d1714713.html
   My bibliography  Save this article

Flexible Job-Shop Scheduling Integrating Carbon Cap-And-Trade Policy and Outsourcing Strategy

Author

Listed:
  • Like Zhang

    (Henan Provincial Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China)

  • Wenpu Liu

    (Henan Provincial Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China)

  • Hua Wang

    (College of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China)

  • Guoqiang Shi

    (College of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China)

  • Qianwang Deng

    (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China)

  • Xinyu Yang

    (Henan Provincial Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China)

Abstract

Carbon cap-and-trade is a practical policy in guiding manufacturers to produce economic and environmental production plans. However, previous studies on carbon cap-and-trade are from a macro level to guide manufacturers to make production plans, rather than from a perspective of specific production scheduling, which leads to a lack of theoretical guidance for manufacturers to develop reasonable production scheduling schemes for specific production orders. This article investigates a specific scheduling problem in a flexible job-shop environment that considers the carbon cap-and-trade policy, aiming to provide guidance for specific production scheduling (i.e., resource allocation). In the proposed problem, carbon emissions have an upper limit. A penalty will be generated if the emissions overpass the predetermined cap. To satisfy the carbon emission cap, the manufacturer can trade carbon credits or adopt outsourcing strategy, that is, outsourcing partial orders to partners at the expense of outsourcing costs. To solve the proposed model, a novel and efficient memetic algorithm (NEMA) is proposed. An initialization method and four local search operators are developed to enhance the search ability. Numerous experiments are conducted and the results validate that NEMA is a superior algorithm in both solution quality and efficiency.

Suggested Citation

  • Like Zhang & Wenpu Liu & Hua Wang & Guoqiang Shi & Qianwang Deng & Xinyu Yang, 2025. "Flexible Job-Shop Scheduling Integrating Carbon Cap-And-Trade Policy and Outsourcing Strategy," Sustainability, MDPI, vol. 17(15), pages 1-23, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6978-:d:1714713
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/15/6978/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/15/6978/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiqiang Xia & Mengya Li & Biao Li & Hao Wang, 2021. "The Impact of Carbon Trade on Outsourcing Remanufacturing," IJERPH, MDPI, vol. 18(20), pages 1-18, October.
    2. Wang, Rutian & Wen, Xiangyun & Wang, Xiuyun & Fu, Yanbo & Zhang, Yu, 2022. "Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading," Applied Energy, Elsevier, vol. 311(C).
    3. Hong, Zhaofu & Chu, Chengbin & Yu, Yugang, 2016. "Dual-mode production planning for manufacturing with emission constraints," European Journal of Operational Research, Elsevier, vol. 251(1), pages 96-106.
    4. Ma, Yiming & Wang, Haixin & Hong, Feng & Yang, Junyou & Chen, Zhe & Cui, Haoqian & Feng, Jiawei, 2021. "Modeling and optimization of combined heat and power with power-to-gas and carbon capture system in integrated energy system," Energy, Elsevier, vol. 236(C).
    5. Zhongming Tang & Xingxing Liu & Ying Wang & Da Ma, 2020. "Integrated Inventory-Transportation Scheduling with Sustainability-Dependent Demand under Carbon Emission Policies," Discrete Dynamics in Nature and Society, Hindawi, vol. 2020, pages 1-15, September.
    6. Lin, Chun-Cheng & Zhang, Shi-Yu & Chou, Yu-Lun & Liu, Wan-Yu, 2025. "Energy management scheduling of a smart factory with carbon capture and storage, carbon emission quota cap-and-trade, and green energy trading," Energy, Elsevier, vol. 333(C).
    7. Foumani, Mehdi & Smith-Miles, Kate, 2019. "The impact of various carbon reduction policies on green flowshop scheduling," Applied Energy, Elsevier, vol. 249(C), pages 300-315.
    8. Chengling Hu & Hao Bai & Wei Li & Kaigui Xie & Yipeng Liu & Tong Liu & Changzheng Shao, 2024. "Optimal Scheduling of Networked Microgrids Considering the Temporal Equilibrium Allocation of Annual Carbon Emission Allowance," Sustainability, MDPI, vol. 16(24), pages 1-20, December.
    9. Zhang, Liping & Tang, Qiuhua & Wu, Zhengjia & Wang, Fang, 2017. "Mathematical modeling and evolutionary generation of rule sets for energy-efficient flexible job shops," Energy, Elsevier, vol. 138(C), pages 210-227.
    10. Wu, Xueqi & Che, Ada, 2019. "A memetic differential evolution algorithm for energy-efficient parallel machine scheduling," Omega, Elsevier, vol. 82(C), pages 155-165.
    11. Chai, Qiangfei & Xiao, Zhongdong & Lai, Kee-hung & Zhou, Guanghui, 2018. "Can carbon cap and trade mechanism be beneficial for remanufacturing?," International Journal of Production Economics, Elsevier, vol. 203(C), pages 311-321.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    2. Liu, Dewen & Luo, Zhao & Qin, Jinghui & Wang, Hua & Wang, Gang & Li, Zhao & Zhao, Weijie & Shen, Xin, 2023. "Low-carbon dispatch of multi-district integrated energy systems considering carbon emission trading and green certificate trading," Renewable Energy, Elsevier, vol. 218(C).
    3. Wenting Chang & Chuyi Liu & Guanyu Ren & Jianxiong Wan, 2025. "Energy Management for Distributed Carbon-Neutral Data Centers," Energies, MDPI, vol. 18(11), pages 1-20, May.
    4. Ankang Miao & Yue Yuan & Yi Huang & Han Wu & Chao Feng, 2023. "Stochastic Optimization Model of Capacity Configuration for Integrated Energy Production System Considering Source-Load Uncertainty," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    5. Zheng Zhang & Liqun Liu & Qingfeng Wu & Junqiang He & Huailiang Jiao, 2025. "Optimization of Industrial Parks Considering the Joint Operation of CHP-CCS-P2G Under a Reward and Punishment Carbon Trading Mechanism," Energies, MDPI, vol. 18(17), pages 1-19, August.
    6. Jian Cao & Qin Shao, 2025. "Outsourcing and authorized remanufacturing under voluntary emission reduction mechanism," Flexible Services and Manufacturing Journal, Springer, vol. 37(3), pages 776-815, September.
    7. Tiwari, Shubham & Singh, Jai Govind & Garg, Ankit, 2024. "A static robust energy management approach for modelling low emission multi-vectored energy hub including emission markets and power-to-gas units," Energy, Elsevier, vol. 294(C).
    8. Wu, Qunli & Li, Chunxiang, 2023. "Modeling and operation optimization of hydrogen-based integrated energy system with refined power-to-gas and carbon-capture-storage technologies under carbon trading," Energy, Elsevier, vol. 270(C).
    9. Huang, Shangjiu & Lu, Hao & Chen, Maozhi & Zhao, Wenjun, 2023. "Integrated energy system scheduling considering the correlation of uncertainties," Energy, Elsevier, vol. 283(C).
    10. Li, Jiamei & Ai, Qian & Chen, Minyu, 2023. "Strategic behavior modeling and energy management for electric-thermal-carbon-natural gas integrated energy system considering ancillary service," Energy, Elsevier, vol. 278(C).
    11. Qiuyue Li & Hao Wang & Zhenshan Li & Shangwei Yuan, 2022. "A Comparative Study of the Effect of Different Carbon-Reduction Policies on Outsourcing Remanufacturing," IJERPH, MDPI, vol. 19(6), pages 1-22, March.
    12. Zhang, Kaoshe & Gao, Congchong & Zhang, Gang & Xie, Tuo & Li, Hua, 2024. "Electricity and heat sharing strategy of regional comprehensive energy multi-microgrid based on double-layer game," Energy, Elsevier, vol. 293(C).
    13. Yamashiro, Hirochika & Nonaka, Hirofumi, 2021. "Estimation of processing time using machine learning and real factory data for optimization of parallel machine scheduling problem," Operations Research Perspectives, Elsevier, vol. 8(C).
    14. Lai, Kee-hung & Feng, Yunting & Zhu, Qinghua, 2023. "Digital transformation for green supply chain innovation in manufacturing operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    15. Yan Zhou & Xin-Tong Lin & Zhi-Ping Fan & Kar-Hung Wong, 2022. "Remanufacturing Strategy Choice of a Closed-Loop Supply Chain Network Considering Carbon Emission Trading, Green Innovation, and Green Consumers," IJERPH, MDPI, vol. 19(11), pages 1-42, June.
    16. Hongyu He & Yanzhi Zhao & Xiaojun Ma & Zheng-Guo Lv & Ji-Bo Wang, 2023. "Branch-and-Bound and Heuristic Algorithms for Group Scheduling with Due-Date Assignment and Resource Allocation," Mathematics, MDPI, vol. 11(23), pages 1-14, November.
    17. Jiaqi Wu & Qian Zhang & Yangdong Lu & Tianxi Qin & Jianyong Bai, 2023. "Source-Load Coordinated Low-Carbon Economic Dispatch of Microgrid including Electric Vehicles," Sustainability, MDPI, vol. 15(21), pages 1-21, October.
    18. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    19. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    20. Santos, Lucas F. & Costa, Caliane B.B. & Caballero, José A. & Ravagnani, Mauro A.S.S., 2020. "Synthesis and optimization of work and heat exchange networks using an MINLP model with a reduced number of decision variables," Applied Energy, Elsevier, vol. 262(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6978-:d:1714713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.