IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i15p6972-d1714659.html
   My bibliography  Save this article

Research on the Characteristics and Influencing Factors of Virtual Water Trade Networks in Chinese Provinces

Author

Listed:
  • Guangyao Deng

    (School of Statistics and Data Science, Lanzhou University of Finance and Economics, Lanzhou 730020, China
    Economic Research Institute of The Belt and Road Initiative, Lanzhou University of Finance and Economics, Lanzhou 730020, China)

  • Siqian Hou

    (School of Statistics and Data Science, Lanzhou University of Finance and Economics, Lanzhou 730020, China)

  • Keyu Di

    (School of Statistics and Data Science, Lanzhou University of Finance and Economics, Lanzhou 730020, China)

Abstract

Promoting the sustainable development of virtual water trade is of great significance to safeguarding China’s water resource security and balanced regional economic growth. This study analyzes the virtual water trade network among 31 Chinese provinces based on multi-regional input–output tables from 2012, 2015, and 2017, using total trade decomposition, social network analysis, and exponential random graph models. The key findings are as follows: (1) The total virtual water trade volume remains stable, with Xinjiang, Jiangsu, and Guangdong as the core regions, while remote areas such as Shaanxi and Gansu have lower trade volumes. The primary industry dominates, and it is driven by simple value chains. (2) Provinces such as Xinjiang, Heilongjiang, and Jiangsu form the network’s core. Network density and symmetry increased from 2012 to 2015 but declined slightly in 2017, with efficiency peaking and then dropping, and the clustering coefficient decreased annually. Four economic sectors exhibit distinct interactions: frequent two-way flows in Sector 1, significant inflows in Sector 2, prominent net spillovers in Sector 3, and key brokers in Sector 4. (3) The network evolved from a core-periphery structure with weak ties to a stable, heterogeneous, and resilient system. (4) Influencing factors, such asper capita water resources, economic development, and population, significantly impact trade. Similarities in economic levels, population, and water endowments promote trade, while spatial distance has a limited effect, with geographic proximity showing a significant negative impact on long-distance trade.

Suggested Citation

  • Guangyao Deng & Siqian Hou & Keyu Di, 2025. "Research on the Characteristics and Influencing Factors of Virtual Water Trade Networks in Chinese Provinces," Sustainability, MDPI, vol. 17(15), pages 1-36, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6972-:d:1714659
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/15/6972/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/15/6972/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guangyao Deng & Siqian Hou & Yuting Liu, 2024. "Study on the Impact of National Value Chain Embeddings on the Embodied Carbon Emissions of Chinese Provinces," Sustainability, MDPI, vol. 16(23), pages 1-20, November.
    2. Hunter, David R. & Handcock, Mark S. & Butts, Carter T. & Goodreau, Steven M. & Morris, Martina, 2008. "ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 24(i03).
    3. Song, Yi & Bai, Wenbo & Zhang, Yijun, 2024. "Resilience assessment of trade network in copper industry chain and the risk resistance capacity of core countries: Based on complex network," Resources Policy, Elsevier, vol. 92(C).
    4. Hunter, David R. & Goodreau, Steven M. & Handcock, Mark S., 2008. "Goodness of Fit of Social Network Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 248-258, March.
    5. Yu, Yu & Ma, Daipeng & Qian, Yingmiao, 2023. "A resilience measure for the international nickel trade network," Resources Policy, Elsevier, vol. 86(PA).
    6. Hongwei Dong, 2022. "The Impact of Trade Facilitation on the Networks of Value-Added Trade——Based on Social Network Analysis," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 58(8), pages 2290-2299, June.
    7. Xiaoyi Shi & Xiaoxia Huang & Huifang Liu, 2022. "Research on the Structural Features and Influence Mechanism of the Low-Carbon Technology Cooperation Network Based on Temporal Exponential Random Graph Model," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Nicola, Giacomo & Fritz, Cornelius & Mehrl, Marius & Kauermann, Göran, 2023. "Dependence matters: Statistical models to identify the drivers of tie formation in economic networks," Journal of Economic Behavior & Organization, Elsevier, vol. 215(C), pages 351-363.
    2. Emily Casleton & Daniel J. Nordman & Mark S. Kaiser, 2022. "Modeling Transitivity in Local Structure Graph Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 389-417, June.
    3. He, Xi-jun & Dong, Yan-bo & Wu, Yu-ying & Jiang, Guo-rui & Zheng, Yao, 2019. "Factors affecting evolution of the interprovincial technology patent trade networks in China based on exponential random graph models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 443-457.
    4. Gallemore, Caleb & Di Gregorio, Monica & Moeliono, Moira & Brockhaus, Maria & Prasti H., Rut Dini, 2015. "Transaction costs, power, and multi-level forest governance in Indonesia," Ecological Economics, Elsevier, vol. 114(C), pages 168-179.
    5. Milad Abbasiharofteh & Tom Broekel, 2021. "Still in the shadow of the wall? The case of the Berlin biotechnology cluster," Environment and Planning A, , vol. 53(1), pages 73-94, February.
    6. Lee, Jihui & Li, Gen & Wilson, James D., 2020. "Varying-coefficient models for dynamic networks," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    7. Liu, Linqing & Shen, Mengyun & Sun, Da & Yan, Xiaofei & Hu, Shi, 2022. "Preferential attachment, R&D expenditure and the evolution of international trade networks from the perspective of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    8. Kei, Yik Lun & Chen, Yanzhen & Madrid Padilla, Oscar Hernan, 2023. "A partially separable model for dynamic valued networks," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    9. Joshua Daniel Loyal & Yuguo Chen, 2020. "Statistical Network Analysis: A Review with Applications to the Coronavirus Disease 2019 Pandemic," International Statistical Review, International Statistical Institute, vol. 88(2), pages 419-440, August.
    10. Vishesh Karwa & Pavel N. Krivitsky & Aleksandra B. Slavković, 2017. "Sharing social network data: differentially private estimation of exponential family random-graph models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 481-500, April.
    11. Ashish Arora & Michelle Gittelman & Sarah Kaplan & John Lynch & Will Mitchell & Nicolaj Siggelkow & Ji Youn (Rose) Kim & Michael Howard & Emily Cox Pahnke & Warren Boeker, 2016. "Understanding network formation in strategy research: Exponential random graph models," Strategic Management Journal, Wiley Blackwell, vol. 37(1), pages 22-44, January.
    12. Alex Stivala & Garry Robins & Alessandro Lomi, 2020. "Exponential random graph model parameter estimation for very large directed networks," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-21, January.
    13. Sándor Juhász, 2021. "Spinoffs and tie formation in cluster knowledge networks," Small Business Economics, Springer, vol. 56(4), pages 1385-1404, April.
    14. Darko Cherepnalkoski & Andreas Karpf & Igor Mozetič & Miha Grčar, 2016. "Cohesion and Coalition Formation in the European Parliament: Roll-Call Votes and Twitter Activities," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-27, November.
    15. Kayvan Sadeghi & Alessandro Rinaldo, 2020. "Hierarchical models for independence structures of networks," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 439-457, August.
    16. Marc Esteve-Del-Valle, 2022. "Homophily and Polarization in Twitter Political Networks: A Cross-Country Analysis," Media and Communication, Cogitatio Press, vol. 10(2), pages 81-92.
    17. Tom A. B. Snijders & Christian E. G. Steglich, 2015. "Representing Micro–Macro Linkages by Actor-based Dynamic Network Models," Sociological Methods & Research, , vol. 44(2), pages 222-271, May.
    18. Sun, Han & Yuan, Ziyi & Wang, Xiaoxue & Chen, Lu & Zha, Zhiyun, 2025. "The security evaluation of nickel industrial and supply chains based on the NDEA window model," Resources Policy, Elsevier, vol. 100(C).
    19. Neal, Zachary & Domagalski, Rachel & Yan, Xiaoqin, 2020. "Party Control as a Context for Homophily in Collaborations among US House Representatives, 1981 -- 2015," OSF Preprints qwdxs, Center for Open Science.
    20. Prochnow, Tyler & Patterson, Megan S. & Hartnell, Logan & West, Geoffrey & Umstattd Meyer, M. Renée, 2021. "Implications of race and ethnicity for child physical activity and social connections at summer care programs," Children and Youth Services Review, Elsevier, vol. 127(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6972-:d:1714659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.