IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i14p6401-d1700487.html
   My bibliography  Save this article

An Integrated Assessment Approach for Underground Gas Storage in Multi-Layered Water-Bearing Gas Reservoirs

Author

Listed:
  • Junyu You

    (School of Petroleum and Natural Gas Engineering, Chongqing University of Science and Technology, Chongqing 401331, China)

  • Ziang He

    (School of Petroleum and Natural Gas Engineering, Chongqing University of Science and Technology, Chongqing 401331, China)

  • Xiaoliang Huang

    (School of Petroleum and Natural Gas Engineering, Chongqing University of Science and Technology, Chongqing 401331, China)

  • Ziyi Feng

    (School of Petroleum and Natural Gas Engineering, Chongqing University of Science and Technology, Chongqing 401331, China)

  • Qiqi Wanyan

    (Underground Storage Research Center, PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China)

  • Songze Li

    (School of Petroleum and Natural Gas Engineering, Chongqing University of Science and Technology, Chongqing 401331, China)

  • Hongcheng Xu

    (Underground Storage Research Center, PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China)

Abstract

In the global energy sector, water-bearing reservoir-typed gas storage accounts for about 30% of underground gas storage (UGS) reservoirs and is vital for natural gas storage, balancing gas consumption, and ensuring energy supply stability. However, when constructing the UGS in the M gas reservoir, selecting suitable areas poses a challenge due to the complicated gas–water distribution in the multi-layered water-bearing gas reservoir with a long production history. To address this issue and enhance energy storage efficiency, this study presents an integrated geomechanical-hydraulic assessment framework for choosing optimal UGS construction horizons in multi-layered water-bearing gas reservoirs. The horizons and sub-layers of the gas reservoir have been quantitatively assessed to filter out the favorable areas, considering both aspects of geological characteristics and production dynamics. Geologically, caprock-sealing capacity was assessed via rock properties, Shale Gouge Ratio (SGR), and transect breakthrough pressure. Dynamically, water invasion characteristics and the water–gas distribution pattern were analyzed. Based on both geological and dynamic assessment results, the favorable layers for UGS construction were selected. Then, a compositional numerical model was established to digitally simulate and validate the feasibility of constructing and operating the M UGS in the target layers. The results indicated the following: (1) The selected area has an SGR greater than 50%, and the caprock has a continuous lateral distribution with a thickness range from 53 to 78 m and a permeability of less than 0.05 mD. Within the operational pressure ranging from 8 MPa to 12.8 MPa, the mechanical properties of the caprock shale had no obvious changes after 1000 fatigue cycles, which demonstrated the good sealing capacity of the caprock. (2) The main water-producing formations were identified, and the sub-layers with inactive edge water and low levels of water intrusion were selected. After the comprehensive analysis, the I-2 and I-6 sub-layer in the M 8 block and M 14 block were selected as the target layers. The numerical simulation results indicated an effective working gas volume of 263 million cubic meters, demonstrating the significant potential of these layers for UGS construction and their positive impact on energy storage capacity and supply stability.

Suggested Citation

  • Junyu You & Ziang He & Xiaoliang Huang & Ziyi Feng & Qiqi Wanyan & Songze Li & Hongcheng Xu, 2025. "An Integrated Assessment Approach for Underground Gas Storage in Multi-Layered Water-Bearing Gas Reservoirs," Sustainability, MDPI, vol. 17(14), pages 1-24, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6401-:d:1700487
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/14/6401/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/14/6401/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan Kowalski & Lukasz Klimkowski & Stanislaw Nagy, 2023. "Numerical Simulation Study on Underground Gas Storage with Cushion Gas Partially Replaced with Carbon Dioxide," Energies, MDPI, vol. 16(14), pages 1-19, July.
    2. Li, Yi & Wang, Hao & Wang, Jinsheng & Hu, Litang & Wu, Xiaohua & Yang, Yabin & Gai, Peng & Liu, Yaning & Li, Yi, 2024. "The underground performance analysis of compressed air energy storage in aquifers through field testing," Applied Energy, Elsevier, vol. 366(C).
    3. Liming Zhang & Shengqun Jiang & Jin Yu, 2020. "Experimental Research into the Evolution of Permeability of Sandstone under Triaxial Compression," Energies, MDPI, vol. 13(19), pages 1-20, September.
    4. Barbara Uliasz-Misiak & Jacek Misiak, 2024. "Underground Gas Storage in Saline Aquifers: Geological Aspects," Energies, MDPI, vol. 17(7), pages 1-23, March.
    5. Li, Nan & Zhang, Jie & Xia, Ming-Ji & Sun, Chang-Yu & Liu, Yan-Sheng & Chen, Guang-Jin, 2021. "Gas production from heterogeneous hydrate-bearing sediments by depressurization in a large-scale simulator," Energy, Elsevier, vol. 234(C).
    6. Joeri Rogelj & Michel den Elzen & Niklas Höhne & Taryn Fransen & Hanna Fekete & Harald Winkler & Roberto Schaeffer & Fu Sha & Keywan Riahi & Malte Meinshausen, 2016. "Paris Agreement climate proposals need a boost to keep warming well below 2 °C," Nature, Nature, vol. 534(7609), pages 631-639, June.
    7. Gu, Yuhang & Liu, Xuejian & Li, Yan & Lu, Hongfeng & Xu, Chenlu & Ren, Jinfeng & Chen, Guangjin & Linga, Praveen & Zhao, Jianzhong & Yin, Zhenyuan, 2025. "Feasibility analysis of liquid CO2 injection and sequestration as hydrates in South China Sea marine sediments over 100 years," Applied Energy, Elsevier, vol. 380(C).
    8. Xiaoying Lin & Jianhui Zeng & Jian Wang & Meixin Huang, 2020. "Natural Gas Reservoir Characteristics and Non-Darcy Flow in Low-Permeability Sandstone Reservoir of Sulige Gas Field, Ordos Basin," Energies, MDPI, vol. 13(7), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bingzheng & Lu, Xiaofei & Zhang, Cancan & Wang, Hongsheng, 2022. "Cascade and hybrid processes for co-generating solar-based fuels and electricity via combining spectral splitting technology and membrane reactor," Renewable Energy, Elsevier, vol. 196(C), pages 782-799.
    2. Alexander C. Abajian & Tamma Carleton & Kyle C. Meng & Olivier Deschênes, 2025. "Quantifying the global climate feedback from energy-based adaptation," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    3. Sapkota, Krishna & Gemechu, Eskinder & Oni, Abayomi Olufemi & Ma, Linwei & Kumar, Amit, 2022. "Greenhouse gas emissions from Canadian oil sands supply chains to China," Energy, Elsevier, vol. 251(C).
    4. Piris-Cabezas, Pedro & Lubowski, Ruben N. & Leslie, Gabriela, 2023. "Estimating the potential of international carbon markets to increase global climate ambition," World Development, Elsevier, vol. 167(C).
    5. Hu, Xuanyi & Liu, Lanbiao & Wang, Daoping, 2024. "How does regional carbon transition affect loan pricing? Evidence from China," Finance Research Letters, Elsevier, vol. 70(C).
    6. Alt, Marius & Gallier, Carlo & Kesternich, Martin & Sturm, Bodo, 2023. "Collective minimum contributions to counteract the ratchet effect in the voluntary provision of public goods," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    7. Rong Li & Brent Sohngen & Xiaohui Tian, 2022. "Efficiency of forest carbon policies at intensive and extensive margins," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1243-1267, August.
    8. Heleen L. Soest & Lara Aleluia Reis & Luiz Bernardo Baptista & Christoph Bertram & Jacques Després & Laurent Drouet & Michel Elzen & Panagiotis Fragkos & Oliver Fricko & Shinichiro Fujimori & Neil Gra, 2022. "Author Correction: Global roll-out of comprehensive policy measures may aid in bridging emissions gap," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    9. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    10. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    11. Thananya Janhuaton & Vatanavongs Ratanavaraha & Sajjakaj Jomnonkwao, 2024. "Forecasting Thailand’s Transportation CO 2 Emissions: A Comparison among Artificial Intelligent Models," Forecasting, MDPI, vol. 6(2), pages 1-23, June.
    12. Shizhao Zhang & Shuzhi Wang & Jiayong Zhang & Bao Wang & Hui Wang & Liwei Liu & Chong Cao & Muyang Shi & Yuhan Liu, 2025. "Research on the Application of Biochar in Carbon Sequestration: A Bibliometric Analysis," Energies, MDPI, vol. 18(11), pages 1-31, May.
    13. Si Huang & Yinping Li & Xilin Shi & Weizheng Bai & Yashuai Huang & Yang Hong & Xiaoyi Liu & Hongling Ma & Peng Li & Mingnan Xu & Tianfu Xue, 2024. "The Role of Underground Salt Caverns in Renewable Energy Peaking: A Review," Energies, MDPI, vol. 17(23), pages 1-23, November.
    14. Shi, Kangji & Wang, Zifei & Jia, Yuxin & Li, Qingping & Lv, Xin & Wang, Tian & Zhang, Lunxiang & Liu, Yu & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2022. "Effects of the vertical heterogeneity on the gas production behavior from hydrate reservoirs simulated by the fine sediments from the South China Sea," Energy, Elsevier, vol. 255(C).
    15. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    16. Joseph L.-H. Tsui & Rosario Evans Pena & Monika Moir & Rhys P. D. Inward & Eduan Wilkinson & James Emmanuel San & Jenicca Poongavanan & Sumali Bajaj & Bernardo Gutierrez & Abhishek Dasgupta & Tulio Ol, 2024. "Impacts of climate change-related human migration on infectious diseases," Nature Climate Change, Nature, vol. 14(8), pages 793-802, August.
    17. Qi, Ye & Lu, Jiaqi & Liu, Tianle, 2024. "Measuring energy transition away from fossil fuels: A new index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    18. Yang, Shenyao & Hu, Shilai & Qi, Zhilin & Qi, Huiqing & Zhao, Guanqun & Li, Jiqiang & Yan, Wende & Huang, Xiaoliang, 2024. "Experiment and prediction for dynamic storage capacity of underground gas storage rebuilt from hydrocarbon reservoir," Renewable Energy, Elsevier, vol. 222(C).
    19. Liu, Jing-Yue & Lei, Quan & Li, Ruojin & Zhang, Yue-Jun, 2024. "Resistance or motivation? Impact of climate risk on corporate greenwashing: An empirical study of Chinese enterprises," Global Finance Journal, Elsevier, vol. 62(C).
    20. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6401-:d:1700487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.