IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i14p6320-d1698450.html
   My bibliography  Save this article

Enhancing Disaster Resilience Through Mobile Solar–Biogas Hybrid PowerKiosks

Author

Listed:
  • Seneshaw Tsegaye

    (Department of Bioengineering, Civil Engineering and Environmental Engineering, U.A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard S., Fort Myers, FL 33965, USA)

  • Mason Lundquist

    (Department of Bioengineering, Civil Engineering and Environmental Engineering, U.A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard S., Fort Myers, FL 33965, USA)

  • Alexis Adams

    (Department of Bioengineering, Civil Engineering and Environmental Engineering, U.A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard S., Fort Myers, FL 33965, USA)

  • Thomas H. Culhane

    (Patel College of Global Sustainability, University of South Florida, 4202 E Fowler Ave., Tampa, FL 33620, USA)

  • Peter R. Michael

    (Department of Bioengineering, Civil Engineering and Environmental Engineering, U.A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard S., Fort Myers, FL 33965, USA)

  • Jeffrey L. Pearson

    (Department of Bioengineering, Civil Engineering and Environmental Engineering, U.A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard S., Fort Myers, FL 33965, USA)

  • Thomas M. Missimer

    (Department of Bioengineering, Civil Engineering and Environmental Engineering, U.A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard S., Fort Myers, FL 33965, USA)

Abstract

Natural disasters in the United States frequently wreak havoc on critical infrastructure, affecting energy, water, transportation, and communication systems. To address these disruptions, the use of mobile power solutions like PowerKiosk trailers is a partial solution during recovery periods. PowerKiosk is a trailer equipped with renewable energy sources such as solar panels and biogas generators, offering a promising strategy for emergency power restoration. With a daily power output of 12.1 kWh, PowerKiosk trailers can support small lift stations or a few homes, providing a temporary solution during emergencies. Their key strength lies in their mobility, allowing them to quickly reach disaster-affected areas and deliver power when and where it is most needed. This flexibility is particularly valuable in regions like Florida, where hurricanes are common, and power outages can cause widespread disruption. Although the PowerKiosk might not be suitable for long-term use because of its limited capacity, it can play a critical role in disaster recovery efforts. In a community-wide power outage, deploying the PowerKiosk to a lift station ensures essential services like wastewater management, benefiting everyone. By using this mobile power solution, community resilience can be enhanced in the face of natural disasters.

Suggested Citation

  • Seneshaw Tsegaye & Mason Lundquist & Alexis Adams & Thomas H. Culhane & Peter R. Michael & Jeffrey L. Pearson & Thomas M. Missimer, 2025. "Enhancing Disaster Resilience Through Mobile Solar–Biogas Hybrid PowerKiosks," Sustainability, MDPI, vol. 17(14), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6320-:d:1698450
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/14/6320/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/14/6320/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jesse Dugan & Salman Mohagheghi & Benjamin Kroposki, 2021. "Application of Mobile Energy Storage for Enhancing Power Grid Resilience: A Review," Energies, MDPI, vol. 14(20), pages 1-19, October.
    2. Shamurad, Burhan & Sallis, Paul & Petropoulos, Evangelos & Tabraiz, Shamas & Ospina, Carolina & Leary, Peter & Dolfing, Jan & Gray, Neil, 2020. "Stable biogas production from single-stage anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 263(C).
    3. Adam Smith & Jessica Matthews, 2015. "Quantifying uncertainty and variable sensitivity within the US billion-dollar weather and climate disaster cost estimates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1829-1851, July.
    4. Anahita Rabii & Saad Aldin & Yaser Dahman & Elsayed Elbeshbishy, 2019. "A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration," Energies, MDPI, vol. 12(6), pages 1-25, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amar Naji & Sabrina Guérin Rechdaoui & Elise Jabagi & Carlyne Lacroix & Sam Azimi & Vincent Rocher, 2023. "Pilot-Scale Anaerobic Co-Digestion of Wastewater Sludge with Lignocellulosic Waste: A Study of Performance and Limits," Energies, MDPI, vol. 16(18), pages 1-13, September.
    2. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    3. Roberto Eloy Hernández Regalado & Jurek Häner & Elmar Brügging & Jens Tränckner, 2022. "Techno-Economic Assessment of Solid–Liquid Biogas Treatment Plants for the Agro-Industrial Sector," Energies, MDPI, vol. 15(12), pages 1-20, June.
    4. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    6. Liu, Yang & He, Pinjing & Duan, Haowen & Shao, Liming & Lü, Fan, 2021. "Low calcium dosage favors methanation of long-chain fatty acids," Applied Energy, Elsevier, vol. 285(C).
    7. Muhammad Arif Fikri Hamzah & Jamaliah Md Jahim & Peer Mohamed Abdul & Ahmad Jaril Asis, 2019. "Investigation of Temperature Effect on Start-Up Operation from Anaerobic Digestion of Acidified Palm Oil Mill Effluent," Energies, MDPI, vol. 12(13), pages 1-16, June.
    8. Debra Javeline & Tracy Kijewski-Correa & Angela Chesler, 2019. "Does it matter if you “believe” in climate change? Not for coastal home vulnerability," Climatic Change, Springer, vol. 155(4), pages 511-532, August.
    9. Thilini Mahanama & Abootaleb Shirvani & Svetlozar Rachev, 2022. "A Natural Disasters Index," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(2), pages 263-284, April.
    10. Nicolas Bruneau & Juergen Grieser & Thomas Loridan & Enrica Bellone & Shree Khare, 2017. "The impact of extra-tropical transitioning on storm surge and waves in catastrophe risk modelling: application to the Japanese coastline," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 649-667, January.
    11. Wang, Jing & Liu, Sitong & Feng, Kun & Lou, Yu & Ma, Jun & Xing, Defeng, 2025. "Anaerobic digestion of lignocellulosic biomass: Process intensification and artificial intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    12. Wang, Xinzhi & Lin, Qingxia & Wu, Zhiyong & Zhang, Yuliang & Li, Changwen & Liu, Ji & Zhang, Shinan & Li, Songyu, 2025. "Agricultural GDP exposure to drought and its machine learning-based prediction in the Jialing River Basin, China," Agricultural Water Management, Elsevier, vol. 307(C).
    13. Saha, Chayan Kumer & Nandi, Rajesh & Akter, Shammi & Hossain, Samira & Kabir, Kazi Bayzid & Kirtania, Kawnish & Islam, Md Tahmid & Guidugli, Laura & Reza, M. Toufiq & Alam, Md Monjurul, 2024. "Technical prospects and challenges of anaerobic co-digestion in Bangladesh: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    14. David Fangueiro & Paula Alvarenga & Rita Fragoso, 2021. "Horticulture and Orchards as New Markets for Manure Valorisation with Less Environmental Impacts," Sustainability, MDPI, vol. 13(3), pages 1-28, January.
    15. Asitha De Silva & Dilanthi Amaratunga & Richard Haigh, 2022. "Green and Blue Infrastructure as Nature-Based Better Preparedness Solutions for Disaster Risk Reduction: Key Policy Aspects," Sustainability, MDPI, vol. 14(23), pages 1-26, December.
    16. Guerin, Turlough F., 2022. "Business model scaling can be used to activate and grow the biogas-to-grid market in Australia to decarbonise hard-to-abate industries: An application of entrepreneurial management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Wang, Xuezhi & Lei, Zhongfang & Shimizu, Kazuya & Zhang, Zhenya & Lee, Duu-Jong, 2021. "Recent advancements in nanobubble water technology and its application in energy recovery from organic solid wastes towards a greater environmental friendliness of anaerobic digestion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Shahriar Akter & Samuel Fosso Wamba, 2019. "Big data and disaster management: a systematic review and agenda for future research," Annals of Operations Research, Springer, vol. 283(1), pages 939-959, December.
    19. Thilini V. Mahanama & Abootaleb Shirvani, 2020. "A Natural Disasters Index," Papers 2008.03672, arXiv.org.
    20. Collins, B.A. & Birzer, C.H. & Harris, P.W. & Kidd, S.P. & McCabe, B.K. & Medwell, P.R., 2023. "Two-phase anaerobic digestion in leach bed reactors coupled to anaerobic filters: A review and the potential of biochar filters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6320-:d:1698450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.