IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p5909-d1688542.html
   My bibliography  Save this article

Economic Feasibility and Operational Performance of Rotor Sails in Maritime Transport

Author

Listed:
  • Kristine Carjova

    (Estonian Maritime Academy, Tallinn University of Technology, Kopli 101, 11712 Tallinn, Estonia)

  • Olli-Pekka Hilmola

    (Estonian Maritime Academy, Tallinn University of Technology, Kopli 101, 11712 Tallinn, Estonia)

  • Ulla Tapaninen

    (Estonian Maritime Academy, Tallinn University of Technology, Kopli 101, 11712 Tallinn, Estonia)

Abstract

The maritime sector is under pressure to increase ship energy efficiency and reduce greenhouse gas (GHG) emissions as a part of global decarbonization goals. Various innovative technologies are being adopted in recent years, raising concerns not only about technological feasibility but also about the economic viability of such technologies in the context of sustainable maritime practices. This study evaluates the operational performance, potential to increase energy efficiency, and economic feasibility of wind-assisted propulsion technologies such as rotor sails across different vessel types and operational profiles. As a contribution to cleaner and more efficient shipping, energy savings produced by rotor thrust were analyzed in relation to vessel dimensions and rotor configuration. The results derived from publicly available industry data including shipowner reports, manufacturer case studies, and classification society publications on 25 confirmed rotor sail installations between 2010 and 2025 indicate that savings typically range between 4% and 15%, with isolated cases reporting up to 25%. A simulation model was developed to assess payback time based on varying fuel consumption, investment cost, CO 2 pricing, and operational parameters. Monte Carlo analysis confirmed that under typical assumptions rotor sail investments can reach payback in three to six years (as the ship is also liable for CO 2 payments). These findings offer practical guidance for shipowners and operators evaluating wind-assisted propulsion under current and emerging environmental regulations and contribute to advancing sustainability in maritime transport. The research contributes to bridging the gap between simulation-based and real-world performance evaluations of rotor sail technologies.

Suggested Citation

  • Kristine Carjova & Olli-Pekka Hilmola & Ulla Tapaninen, 2025. "Economic Feasibility and Operational Performance of Rotor Sails in Maritime Transport," Sustainability, MDPI, vol. 17(13), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5909-:d:1688542
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/5909/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/5909/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Traut, Michael & Gilbert, Paul & Walsh, Conor & Bows, Alice & Filippone, Antonio & Stansby, Peter & Wood, Ruth, 2014. "Propulsive power contribution of a kite and a Flettner rotor on selected shipping routes," Applied Energy, Elsevier, vol. 113(C), pages 362-372.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Orestis Schinas & Niklas Bergmann, 2021. "The Short-Term Cost of Greening the Global Fleet," Sustainability, MDPI, vol. 13(16), pages 1-32, August.
    3. Groppi, Daniele & Pastore, Lorenzo Mario & Nastasi, Benedetto & Prina, Matteo Giacomo & Astiaso Garcia, Davide & de Santoli, Livio, 2025. "Energy modelling challenges for the full decarbonisation of hard-to-abate sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    4. Ling-Chin, Janie & Roskilly, Anthony P., 2016. "Investigating the implications of a new-build hybrid power system for Roll-on/Roll-off cargo ships from a sustainability perspective – A life cycle assessment case study," Applied Energy, Elsevier, vol. 181(C), pages 416-434.
    5. John E. Candelo-Beccera & Leonardo Bohórquez Maldonado & Edwin Paipa Sanabria & Hernán Vergara Pestana & José Jiménez García, 2023. "Technological Alternatives for Electric Propulsion Systems in the Waterway Sector," Energies, MDPI, vol. 16(23), pages 1-16, November.
    6. Al Baroudi, Hisham & Awoyomi, Adeola & Patchigolla, Kumar & Jonnalagadda, Kranthi & Anthony, E.J., 2021. "A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage," Applied Energy, Elsevier, vol. 287(C).
    7. Salman Farrukh & Mingqiang Li & Georgios D. Kouris & Dawei Wu & Karl Dearn & Zacharias Yerasimou & Pavlos Diamantis & Kostas Andrianos, 2023. "Pathways to Decarbonization of Deep-Sea Shipping: An Aframax Case Study," Energies, MDPI, vol. 16(22), pages 1-26, November.
    8. Xu, Lang & Wu, Jiyuan & Yan, Ran & Chen, Jihong, 2025. "Is international shipping in right direction towards carbon emissions control?," Transport Policy, Elsevier, vol. 166(C), pages 189-201.
    9. Tino Vidović & Jakov Šimunović & Gojmir Radica & Željko Penga, 2023. "Systematic Overview of Newly Available Technologies in the Green Maritime Sector," Energies, MDPI, vol. 16(2), pages 1-26, January.
    10. Wang, Zhuang & Chen, Li & Huang, Lianzhong & Wang, Kai & Ma, Ranqi & Wang, Bin, 2025. "A novel multivariable coupling optimization method of wind-assisted propulsion system for a large crude carrier," Energy, Elsevier, vol. 322(C).
    11. Hofmann, Erik & Solakivi, Tomi & Töyli, Juuso & Zinn, Martin, 2018. "Oil price shocks and the financial performance patterns of logistics service providers," Energy Economics, Elsevier, vol. 72(C), pages 290-306.
    12. Meng, Xianghui & Yang, Yanan & Yin, Songwei & Wang, Xiaohao, 2024. "Unmanned sailboat with self-balancing rotating sail based on elastic rope: Modeling, optimization, and sea trials," Applied Energy, Elsevier, vol. 363(C).
    13. Todd Chou & Vasileios Kosmas & Michele Acciaro & Katharina Renken, 2021. "A Comeback of Wind Power in Shipping: An Economic and Operational Review on the Wind-Assisted Ship Propulsion Technology," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    14. Ronald A. Halim & Lucie Kirstein & Olaf Merk & Luis M. Martinez, 2018. "Decarbonization Pathways for International Maritime Transport: A Model-Based Policy Impact Assessment," Sustainability, MDPI, vol. 10(7), pages 1-30, June.
    15. Ignė Stalmokaitė & Tommy Larsson Segerlind & Johanna Yliskylä‐Peuralahti, 2023. "Revival of wind‐powered shipping: Comparing the early‐stage innovation process of an incumbent and a newcomer firm," Business Strategy and the Environment, Wiley Blackwell, vol. 32(2), pages 958-975, February.
    16. Jean-David Caprace & Crístofer Hood Marques & Luiz Felipe Assis & Andrea Lucchesi & Paula Carvalho Pereda, 2025. "Sustainable Shipping: Modeling Technological Pathways Toward Net-Zero Emissions in Maritime Transport (Part I)," Sustainability, MDPI, vol. 17(8), pages 1-55, April.
    17. Pan, Pengcheng & Sun, Yuwei & Yuan, Chengqing & Yan, Xinping & Tang, Xujing, 2021. "Research progress on ship power systems integrated with new energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    18. Marcin Kolodziejski & Mariusz Sosnowski, 2025. "Review of Wind-Assisted Propulsion Systems in Maritime Transport," Energies, MDPI, vol. 18(4), pages 1-33, February.
    19. Chai, Merlin & Bonthapalle, Dastagiri Reddy & Sobrayen, Lingeshwaren & Panda, Sanjib K. & Wu, Die & Chen, XiaoQing, 2018. "Alternating current and direct current-based electrical systems for marine vessels with electric propulsion drives," Applied Energy, Elsevier, vol. 231(C), pages 747-756.
    20. Nuchturee, Chalermkiat & Li, Tie & Xia, Hongpu, 2020. "Energy efficiency of integrated electric propulsion for ships – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5909-:d:1688542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.