IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5468-d1678452.html
   My bibliography  Save this article

Performance Enhancement of Photovoltaic Panels Using Natural Porous Media for Thermal Cooling Management

Author

Listed:
  • Ismail Masalha

    (Mechanical Engineering Department, Faculty of Engineering Technology, Al–Balqa Applied University, Amman 11134, Jordan)

  • Omar Badran

    (Mechanical Engineering Department, Faculty of Engineering Technology, Al–Balqa Applied University, Amman 11134, Jordan)

  • Ali Alahmer

    (Department of Mechanical Engineering, Tuskegee University, Tuskegee, AL 36088, USA)

Abstract

This study investigates the potential of low-cost, naturally available porous materials (PoMs), gravel, marble, flint, and sandstone, as thermal management for photovoltaic (PV) panels. Experiments were conducted in a controlled environment at a solar energy laboratory, where variables such as solar irradiance, ambient temperature, air velocity, and water flow were carefully regulated. A solar simulator delivering a constant irradiance of 1250 W/m 2 was used to replicate solar conditions throughout each 3 h trial. The test setup involved polycrystalline PV panels (30 W rated) fitted with cooling channels filled with PoMs of varying porosities (0.35–0.48), evaluated across water flow rates ranging from 1 to 4 L/min. Experimental results showed that PoM cooling significantly outperformed both water-only and passive cooling. Among all the materials tested, sandstone with a porosity of 0.35 and a flow rate of 2.0 L/min demonstrated the highest cooling performance, reducing the panel surface temperature by 58.08% (from 87.7 °C to 36.77 °C), enhancing electrical efficiency by 57.87% (from 4.13% to 6.52%), and increasing power output by 57.81% (from 12.42 W to 19.6 W) compared to the uncooled panel. The enhanced heat transfer (HT) was attributed to improved conductive and convective interactions facilitated by lower porosity and optimal fluid velocity. Furthermore, the cooling system improved I–V characteristics by stabilizing short-circuit current and enhancing open-circuit voltage. Comparative analysis revealed material-dependent efficacy—sandstone > flint > marble > gravel—attributed to thermal conductivity gradients (sandstone: 5 W/m·K vs. gravel: 1.19 W/m·K). The configuration with 0.35 porosity and a 2.0 L/min flow rate proved to be the most effective, offering an optimal balance between thermal performance and resource usage, with an 8–10% efficiency gain over standard water cooling. This study highlights 2.0 L/min as the ideal flow rate, as higher rates lead to increased water usage without significant cooling improvements. Additionally, lower porosity (0.35) enhances convective heat transfer, contributing to improved thermal performance while maintaining energy efficiency.

Suggested Citation

  • Ismail Masalha & Omar Badran & Ali Alahmer, 2025. "Performance Enhancement of Photovoltaic Panels Using Natural Porous Media for Thermal Cooling Management," Sustainability, MDPI, vol. 17(12), pages 1-32, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5468-:d:1678452
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5468/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5468/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5468-:d:1678452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.