IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5468-d1678452.html
   My bibliography  Save this article

Performance Enhancement of Photovoltaic Panels Using Natural Porous Media for Thermal Cooling Management

Author

Listed:
  • Ismail Masalha

    (Mechanical Engineering Department, Faculty of Engineering Technology, Al–Balqa Applied University, Amman 11134, Jordan)

  • Omar Badran

    (Mechanical Engineering Department, Faculty of Engineering Technology, Al–Balqa Applied University, Amman 11134, Jordan)

  • Ali Alahmer

    (Department of Mechanical Engineering, Tuskegee University, Tuskegee, AL 36088, USA)

Abstract

This study investigates the potential of low-cost, naturally available porous materials (PoMs), gravel, marble, flint, and sandstone, as thermal management for photovoltaic (PV) panels. Experiments were conducted in a controlled environment at a solar energy laboratory, where variables such as solar irradiance, ambient temperature, air velocity, and water flow were carefully regulated. A solar simulator delivering a constant irradiance of 1250 W/m 2 was used to replicate solar conditions throughout each 3 h trial. The test setup involved polycrystalline PV panels (30 W rated) fitted with cooling channels filled with PoMs of varying porosities (0.35–0.48), evaluated across water flow rates ranging from 1 to 4 L/min. Experimental results showed that PoM cooling significantly outperformed both water-only and passive cooling. Among all the materials tested, sandstone with a porosity of 0.35 and a flow rate of 2.0 L/min demonstrated the highest cooling performance, reducing the panel surface temperature by 58.08% (from 87.7 °C to 36.77 °C), enhancing electrical efficiency by 57.87% (from 4.13% to 6.52%), and increasing power output by 57.81% (from 12.42 W to 19.6 W) compared to the uncooled panel. The enhanced heat transfer (HT) was attributed to improved conductive and convective interactions facilitated by lower porosity and optimal fluid velocity. Furthermore, the cooling system improved I–V characteristics by stabilizing short-circuit current and enhancing open-circuit voltage. Comparative analysis revealed material-dependent efficacy—sandstone > flint > marble > gravel—attributed to thermal conductivity gradients (sandstone: 5 W/m·K vs. gravel: 1.19 W/m·K). The configuration with 0.35 porosity and a 2.0 L/min flow rate proved to be the most effective, offering an optimal balance between thermal performance and resource usage, with an 8–10% efficiency gain over standard water cooling. This study highlights 2.0 L/min as the ideal flow rate, as higher rates lead to increased water usage without significant cooling improvements. Additionally, lower porosity (0.35) enhances convective heat transfer, contributing to improved thermal performance while maintaining energy efficiency.

Suggested Citation

  • Ismail Masalha & Omar Badran & Ali Alahmer, 2025. "Performance Enhancement of Photovoltaic Panels Using Natural Porous Media for Thermal Cooling Management," Sustainability, MDPI, vol. 17(12), pages 1-32, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5468-:d:1678452
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5468/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5468/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rania M. Ghoniem & Ali Alahmer & Hegazy Rezk & Samer As’ad, 2023. "Optimal Design and Sizing of Hybrid Photovoltaic/Fuel Cell Electrical Power System," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    2. Essa, Mohamed A. & Talaat, M. & Amer, Abdalla & Farahat, M.A., 2021. "Enhancing the photovoltaic system efficiency using porous metallic media integrated with phase change material," Energy, Elsevier, vol. 225(C).
    3. Özşimşek, Atılgan Onurcan & Omar, Muhammed Arslan, 2024. "A numerical study on the effect of employing porous medium on thermal performance of a PV/T system," Renewable Energy, Elsevier, vol. 226(C).
    4. Wang, Wei-Wei & Chen, Jun-Wen & Zhang, Chun-Yu & Yang, Hong-Fei & Ji, Xiao-Wen & Zhang, Hong-Liang & Zhao, Fu-Yun & Cai, Yang, 2024. "Green thermal management of photovoltaic panels by the absorbent hydrogel evaporative (AHE) cooling jointly with 3D porous copper foam (CF) structure," Energy, Elsevier, vol. 293(C).
    5. Liu, Yanfeng & Chen, Yingya & Wang, Dengjia & Liu, Jingrui & Luo, Xi & Wang, Yingying & Liu, Huaican & Liu, Jiaping, 2021. "Experimental and numerical analyses of parameter optimization of photovoltaic cooling system," Energy, Elsevier, vol. 215(PA).
    6. Mukilan Poyyamozhi & Balasubramanian Murugesan & Narayanamoorthi Rajamanickam & Ramalingam Senthil & Mohammad Shorfuzzaman & Waleed Mohammed Abdelfattah, 2024. "Enhancing Power and Thermal Gradient of Solar Photovoltaic Panels with Torched Fly-Ash Tiles for Greener Buildings," Sustainability, MDPI, vol. 16(18), pages 1-22, September.
    7. Amar Fahmi Ismail & Ag Sufiyan Abd Hamid & Adnan Ibrahim & Hasila Jarimi & Kamaruzzaman Sopian, 2022. "Performance Analysis of a Double Pass Solar Air Thermal Collector with Porous Media Using Lava Rock," Energies, MDPI, vol. 15(3), pages 1-19, January.
    8. Mohamed R. Gomaa & Mujahed Al-Dhaifallah & Ali Alahmer & Hegazy Rezk, 2020. "Design, Modeling, and Experimental Investigation of Active Water Cooling Concentrating Photovoltaic System," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agrawal, Monika & Chhajed, Priyank & Chowdhury, Amartya, 2022. "Performance analysis of photovoltaic module with reflector: Optimizing orientation with different tilt scenarios," Renewable Energy, Elsevier, vol. 186(C), pages 10-25.
    2. Yang, Qingyu & Yao, Hui & Yang, Yingying & Azaiez, Mejdi, 2024. "Effect of contact thermal resistance and skeleton thermodynamic properties on solid-liquid phase change heat transfer in porous media: A simulation study," Energy, Elsevier, vol. 300(C).
    3. Huang, Maoquan & Ren, Xingjie & Tang, G.H. & Sun, Qie & Du, Mu, 2024. "Feasibility of realizing photothermal, photovoltaic, and radiative cooling with a flexible structure," Renewable Energy, Elsevier, vol. 236(C).
    4. Shahsavar, Amin & Alwaeli, Ali H.A. & Azimi, Neda & Rostami, Shirin & Sopian, Kamaruzzaman & Arıcı, Müslüm & Estellé, Patrice & Nižetić, Sandro & Kasaeian, Alibakhsh & Ali, Hafiz Muhammad & Ma, Zhenju, 2022. "Exergy studies in water-based and nanofluid-based photovoltaic/thermal collectors: Status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Adel Alblawi & M. Talaat, 2022. "Experimental and Simulation Study Investigating the Effect of a Transparent Pyramidal Cover on PV Cell Performance," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    6. Husam Abdulrasool Hasan & Jenan S. Sherza & Jasim M. Mahdi & Hussein Togun & Azher M. Abed & Raed Khalid Ibrahim & Wahiba Yaïci, 2022. "Experimental Evaluation of the Thermoelectrical Performance of Photovoltaic-Thermal Systems with a Water-Cooled Heat Sink," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    7. Parthiban, Anandhi & Baig, Hasan & Mallick, T.K. & Reddy, K.S., 2022. "Performance investigation of SUNTRAP module for different locations: An energy and exergy analysis," Renewable Energy, Elsevier, vol. 199(C), pages 140-156.
    8. Bin Yan & Qiuxuan Wu & Xiaoni Chi & Chenxi Wu & Ping Luo & Yanbin Luo & Pingliang Zeng, 2022. "Numerical and Experimental Investigation of Photovoltaic/Thermal Systems: Parameter Analysis and Determination of Optimum Flow," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    9. Maadi, Seyed Reza & Sabzali, Hossein & Arabkoohsar, Ahmad, 2024. "Performance characterization of nano-enhanced PV/T systems in various cross-sections, extended flow turbulators, fins, and corrugated patterns," Renewable Energy, Elsevier, vol. 229(C).
    10. Madadi Avargani, Vahid & Zendehboudi, Sohrab & Zamani, Mohammad Amin, 2023. "Performance evaluation of various nano heat transfer fluids in charging/discharging processes of an indirect solar air heating system," Energy, Elsevier, vol. 274(C).
    11. Mustafa Kamal & Renzon Daniel Cosme Pecho & Hassan Falah Fakhruldeen & Hailer Sharif & Vedran Mrzljak & Saber Arabi Nowdeh & Igor Poljak, 2023. "Photovoltaic/Hydrokinetic/Hydrogen Energy System Sizing Considering Uncertainty: A Stochastic Approach Using Two-Point Estimate Method and Improved Gradient-Based Optimizer," Sustainability, MDPI, vol. 15(21), pages 1-30, November.
    12. Zhang, Qi & He, Suoying & Song, Tianyi & Wang, Mingwei & Liu, Zhilan & Zhao, Jifang & Gao, Qi & Huang, Xiang & Han, Kuihua & Qi, Jianhui & Gao, Ming & Shi, Yuetao, 2023. "Modeling of a PV system by a back-mounted spray cooling section for performance improvement," Applied Energy, Elsevier, vol. 332(C).
    13. Chang, Shuaibing & Liu, Haiting & Li, G., 2025. "Effect of installing porous metal insertion inside the collector tube of a photovoltaic thermal system integrated with PCM-copper foam composite," Energy, Elsevier, vol. 314(C).
    14. Eduardo Venegas-Reyes & Naghelli Ortega-Avila & Manuel I. Peña-Cruz & Omar J. García-Ortiz & Norma A. Rodríguez-Muñoz, 2021. "A Linear Hybrid Concentrated Photovoltaic Solar Collector: A Methodology Proposal of Optical and Thermal Analysis," Energies, MDPI, vol. 14(23), pages 1-17, December.
    15. Sheikholeslami, M. & Ghasemian, Mehran & Dehghan, Maziar, 2024. "Numerical simulation and Enviro-economic examination of Photovoltaic system in presence of complex shape of tube equipped with turbulator," Renewable Energy, Elsevier, vol. 231(C).
    16. Noor Fadzlinda Othman & Mohammad Effendy Ya’acob & Li Lu & Ahmad Hakiim Jamaluddin & Ahmad Suhaizi Mat Su & Hashim Hizam & Rosnah Shamsudin & Juju Nakasha Jaafar, 2023. "Advancement in Agriculture Approaches with Agrivoltaics Natural Cooling in Large Scale Solar PV Farms," Agriculture, MDPI, vol. 13(4), pages 1-18, April.
    17. Ji, Chongxing, 2025. "Design, techno-economic feasibility analysis, and sensitivity study of an off-grid hybrid microgrid for developing communities," Renewable Energy, Elsevier, vol. 239(C).
    18. Wang, Baichao & Liu, Yanfeng & Wang, Dengjia & Song, Cong & Fu, Zhiguo & Zhang, Cong, 2024. "A review of the photothermal-photovoltaic energy supply system for building in solar energy enrichment zones," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    19. Sen, Ecem & Celiktas, Melih Soner, 2024. "Performance evaluation and thermal stabilization of photovoltaic panels using phase-change materials," Energy, Elsevier, vol. 302(C).
    20. Wang, Wei-Wei & Liu, Teng & Guo, Jun-Zhe & Li, Bin & Zhang, Hong-Liang & Cai, Yang & Zhao, Fu-Yun & Liu, Di, 2025. "Experimental investigation on the thermal performance of high-concentrated photovoltaic module utilizing the thermal sink of a novel Fan-shaped plate pulsating heat pipe," Applied Energy, Elsevier, vol. 377(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5468-:d:1678452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.