IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5363-d1676083.html
   My bibliography  Save this article

A Hybrid Deep Learning Framework for Wind Speed Prediction with Snake Optimizer and Feature Explainability

Author

Listed:
  • Khaled Yousef

    (Faculty of Environment Science and Economy, Streatham Campus, University of Exeter, Harrison Building, North Park Road, Exeter EX4 4QF, UK)

  • Baris Yuce

    (Faculty of Environment Science and Economy, Streatham Campus, University of Exeter, Harrison Building, North Park Road, Exeter EX4 4QF, UK)

  • Allen He

    (Faculty of Environment Science and Economy, Streatham Campus, University of Exeter, Harrison Building, North Park Road, Exeter EX4 4QF, UK)

Abstract

Renewable energy, especially wind power, is required to reduce greenhouse gas emissions and fossil fuel use. Variable wind patterns and weather make wind energy integration into modern grids difficult. Energy trading, resource planning, and grid stability demand accurate forecasting. This study proposes a hybrid deep learning framework that improves forecasting accuracy and interpretability by combining advanced deep learning (DL) architectures, explainable artificial intelligence (XAI), and metaheuristic optimization. The intricate temporal relationships in wind speed data were captured by training Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), LSTM-GRU hybrid, and Bidirectional LSTM-GRU following data preprocessing and normalization. To enhance transparency, Local Interpretable Model-Agnostic Explanations (LIMEs) were applied, revealing key time-step contributions across three urban datasets (Los Angeles, San Francisco, and San Diego). The framework further incorporates the Snake Optimizer Algorithm (SOA) to optimize hyperparameters such as LSTM units, dropout rate, learning rate, and batch size, ensuring improved training efficiency and reduced forecast error. The model predicted 2020–2040 wind speeds using rolling forecasting; the SOA-optimized LSTM model outperformed baseline and hybrid models, achieving low MSE, RMSE, and MAE and high R 2 scores. This proves its accuracy, stability, and adaptability across climates, supporting wind energy prediction and sustainable energy planning.

Suggested Citation

  • Khaled Yousef & Baris Yuce & Allen He, 2025. "A Hybrid Deep Learning Framework for Wind Speed Prediction with Snake Optimizer and Feature Explainability," Sustainability, MDPI, vol. 17(12), pages 1-25, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5363-:d:1676083
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5363/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5363/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ouyang, Tinghui & Zha, Xiaoming & Qin, Liang & He, Yusen & Tang, Zhenhao, 2019. "Prediction of wind power ramp events based on residual correction," Renewable Energy, Elsevier, vol. 136(C), pages 781-792.
    2. Han Lin Shang, 2020. "Dynamic principal component regression for forecasting functional time series in a group structure," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2020(4), pages 307-322, April.
    3. Li, Qing'an & Cai, Chang & Kamada, Yasunari & Maeda, Takao & Hiromori, Yuto & Zhou, Shuni & Xu, Jianzhong, 2021. "Prediction of power generation of two 30 kW Horizontal Axis Wind Turbines with Gaussian model," Energy, Elsevier, vol. 231(C).
    4. Toubeau, Jean-François & Pardoen, Lorie & Hubert, Louis & Marenne, Nicolas & Sprooten, Jonathan & De Grève, Zacharie & Vallée, François, 2022. "Machine learning-assisted outage planning for maintenance activities in power systems with renewables," Energy, Elsevier, vol. 238(PC).
    5. Cheng, Biyi & Du, Jianjun & Yao, Yingxue, 2022. "Machine learning methods to assist structure design and optimization of Dual Darrieus Wind Turbines," Energy, Elsevier, vol. 244(PA).
    6. Shahram Hanifi & Xiaolei Liu & Zi Lin & Saeid Lotfian, 2020. "A Critical Review of Wind Power Forecasting Methods—Past, Present and Future," Energies, MDPI, vol. 13(15), pages 1-24, July.
    7. Ghoddusi, Hamed & Creamer, Germán G. & Rafizadeh, Nima, 2019. "Machine learning in energy economics and finance: A review," Energy Economics, Elsevier, vol. 81(C), pages 709-727.
    8. Ahmad, Tanveer & Zhang, Dongdong, 2022. "A data-driven deep sequence-to-sequence long-short memory method along with a gated recurrent neural network for wind power forecasting," Energy, Elsevier, vol. 239(PB).
    9. Hu, Huanling & Wang, Lin & Tao, Rui, 2021. "Wind speed forecasting based on variational mode decomposition and improved echo state network," Renewable Energy, Elsevier, vol. 164(C), pages 729-751.
    10. Francisco Haces-Fernandez, 2021. "Higher Wind: Highlighted Expansion Opportunities to Repower Wind Energy," Energies, MDPI, vol. 14(22), pages 1-19, November.
    11. Han, Shuang & Qiao, Yan-hui & Yan, Jie & Liu, Yong-qian & Li, Li & Wang, Zheng, 2019. "Mid-to-long term wind and photovoltaic power generation prediction based on copula function and long short term memory network," Applied Energy, Elsevier, vol. 239(C), pages 181-191.
    12. Shahid, Farah & Zameer, Aneela & Muneeb, Muhammad, 2021. "A novel genetic LSTM model for wind power forecast," Energy, Elsevier, vol. 223(C).
    13. Abou Houran, Mohamad & Salman Bukhari, Syed M. & Zafar, Muhammad Hamza & Mansoor, Majad & Chen, Wenjie, 2023. "COA-CNN-LSTM: Coati optimization algorithm-based hybrid deep learning model for PV/wind power forecasting in smart grid applications," Applied Energy, Elsevier, vol. 349(C).
    14. Moting Su & Zongyi Zhang & Ye Zhu & Donglan Zha & Wenying Wen, 2019. "Data Driven Natural Gas Spot Price Prediction Models Using Machine Learning Methods," Energies, MDPI, vol. 12(9), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdulelah Alkesaiberi & Fouzi Harrou & Ying Sun, 2022. "Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study," Energies, MDPI, vol. 15(7), pages 1-24, March.
    2. Elianne Mora & Jenny Cifuentes & Geovanny Marulanda, 2021. "Short-Term Forecasting of Wind Energy: A Comparison of Deep Learning Frameworks," Energies, MDPI, vol. 14(23), pages 1-26, November.
    3. Zhu, Yingqin & Liu, Yue & Wang, Nan & Zhang, ZhaoZhao & Li, YuanQiang, 2025. "Real-time Error Compensation Transfer Learning with Echo State Networks for Enhanced Wind Power Prediction," Applied Energy, Elsevier, vol. 379(C).
    4. Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
    5. Guo, Nai-Zhi & Shi, Ke-Zhong & Li, Bo & Qi, Liang-Wen & Wu, Hong-Hui & Zhang, Zi-Liang & Xu, Jian-Zhong, 2022. "A physics-inspired neural network model for short-term wind power prediction considering wake effects," Energy, Elsevier, vol. 261(PA).
    6. Shahram Hanifi & Saeid Lotfian & Hossein Zare-Behtash & Andrea Cammarano, 2022. "Offshore Wind Power Forecasting—A New Hyperparameter Optimisation Algorithm for Deep Learning Models," Energies, MDPI, vol. 15(19), pages 1-21, September.
    7. Abdulrahman A. Alghamdi & Abdelhameed Ibrahim & El-Sayed M. El-Kenawy & Abdelaziz A. Abdelhamid, 2023. "Renewable Energy Forecasting Based on Stacking Ensemble Model and Al-Biruni Earth Radius Optimization Algorithm," Energies, MDPI, vol. 16(3), pages 1-30, January.
    8. Liang, Yang & Zhang, Dongqin & Zhang, Jize & Hu, Gang, 2024. "A state-of-the-art analysis on decomposition method for short-term wind speed forecasting using LSTM and a novel hybrid deep learning model," Energy, Elsevier, vol. 313(C).
    9. Gong, Zhipeng & Wan, Anping & Ji, Yunsong & AL-Bukhaiti, Khalil & Yao, Zhehe, 2024. "Improving short-term offshore wind speed forecast accuracy using a VMD-PE-FCGRU hybrid model," Energy, Elsevier, vol. 295(C).
    10. Xu, Xuefang & Hu, Shiting & Shi, Peiming & Shao, Huaishuang & Li, Ruixiong & Li, Zhi, 2023. "Natural phase space reconstruction-based broad learning system for short-term wind speed prediction: Case studies of an offshore wind farm," Energy, Elsevier, vol. 262(PA).
    11. Wang, Jun & Cao, Junxing & Yuan, Shan & Cheng, Ming, 2021. "Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network," Energy, Elsevier, vol. 233(C).
    12. Zhang, Mingyue & Han, Yang & Wang, Chaoyang & Yang, Ping & Wang, Congling & Zalhaf, Amr S., 2024. "Ultra-short-term photovoltaic power prediction based on similar day clustering and temporal convolutional network with bidirectional long short-term memory model: A case study using DKASC data," Applied Energy, Elsevier, vol. 375(C).
    13. Zucatelli, P.J. & Nascimento, E.G.S. & Santos, A.Á.B. & Arce, A.M.G. & Moreira, D.M., 2021. "An investigation on deep learning and wavelet transform to nowcast wind power and wind power ramp: A case study in Brazil and Uruguay," Energy, Elsevier, vol. 230(C).
    14. Sun, Xiaoying & Liu, Haizhong, 2024. "Multivariate short-term wind speed prediction based on PSO-VMD-SE-ICEEMDAN two-stage decomposition and Att-S2S," Energy, Elsevier, vol. 305(C).
    15. Chen, Jie & Peng, Tian & Qian, Shijie & Ge, Yida & Wang, Zheng & Nazir, Muhammad Shahzad & Zhang, Chu, 2025. "An error-corrected deep Autoformer model via Bayesian optimization algorithm and secondary decomposition for photovoltaic power prediction," Applied Energy, Elsevier, vol. 377(PD).
    16. Pia Leminski & Enzo Pinheiro & Taha B. M. J. Ouarda, 2025. "Ensemble of Artificial Neural Networks for Seasonal Forecasting of Wind Speed in Eastern Canada," Energies, MDPI, vol. 18(11), pages 1-17, June.
    17. Zhang, Chu & Ji, Chunlei & Hua, Lei & Ma, Huixin & Nazir, Muhammad Shahzad & Peng, Tian, 2022. "Evolutionary quantile regression gated recurrent unit network based on variational mode decomposition, improved whale optimization algorithm for probabilistic short-term wind speed prediction," Renewable Energy, Elsevier, vol. 197(C), pages 668-682.
    18. Hu, Miaosen & Zheng, Guoqiang & Su, Zhonge & Kong, Lingrui & Wang, Guodong, 2024. "Short-term wind power prediction based on improved variational modal decomposition, least absolute shrinkage and selection operator, and BiGRU networks," Energy, Elsevier, vol. 303(C).
    19. Zhao, Beizhen & He, Xin & Ran, Shaolin & Zhang, Yong & Cheng, Cheng, 2024. "Spatial correlation learning based on graph neural network for medium-term wind power forecasting," Energy, Elsevier, vol. 296(C).
    20. Meng, Anbo & Xie, Zhifeng & Luo, Jianqiang & Zeng, Ying & Xu, Xuancong & Li, Yidian & Wu, Zhenbo & Zhang, Zhan & Zhu, Jianbin & Xian, Zikang & Li, Chen & Yan, Baiping & Yin, Hao, 2023. "An adaptive variational mode decomposition for wind power prediction using convolutional block attention deep learning network," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5363-:d:1676083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.