IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2975-d1672185.html
   My bibliography  Save this article

Ensemble of Artificial Neural Networks for Seasonal Forecasting of Wind Speed in Eastern Canada

Author

Listed:
  • Pia Leminski

    (Centre Eau-Terre-Environnement, Institut National de la Recherche Scientifique, Québec City, QC G1K 9A9, Canada)

  • Enzo Pinheiro

    (Centre Eau-Terre-Environnement, Institut National de la Recherche Scientifique, Québec City, QC G1K 9A9, Canada)

  • Taha B. M. J. Ouarda

    (Centre Eau-Terre-Environnement, Institut National de la Recherche Scientifique, Québec City, QC G1K 9A9, Canada)

Abstract

Efficient utilization of wind energy resources, including advances in weather and seasonal forecasting and climate projections, is imperative for the sustainable progress of wind power generation. Although temperature and precipitation data receive considerable attention in interannual variability and seasonal forecasting studies, there is a notable gap in exploring correlations between climate indices and wind speeds. This paper proposes the use of an ensemble of artificial neural networks to forecast wind speeds based on climate oscillation indices and assesses its performance. An initial examination indicates a correlation signal between the climate indices and wind speeds of ERA5 for the selected case study in eastern Canada. Forecasts are made for the season April–May–June (AMJ) and are based on most correlated climate indices of preceding seasons. A pointwise forecast is conducted with a 20-member ensemble, which is verified by leave-on-out cross-validation. The results obtained are analyzed in terms of root mean squared error, bias, and skill score, and they show competitive performance with state-of-the-art numerical wind predictions from SEAS5, outperforming them in several regions. A relatively simple model with a single unit in the hidden layer and a regularization rate of 10 − 2 provides promising results, especially in areas with a higher number of indices considered. This study adds to global efforts to enable more accurate forecasting by introducing a novel approach.

Suggested Citation

  • Pia Leminski & Enzo Pinheiro & Taha B. M. J. Ouarda, 2025. "Ensemble of Artificial Neural Networks for Seasonal Forecasting of Wind Speed in Eastern Canada," Energies, MDPI, vol. 18(11), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2975-:d:1672185
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2975/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2975/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ilan Price & Alvaro Sanchez-Gonzalez & Ferran Alet & Tom R. Andersson & Andrew El-Kadi & Dominic Masters & Timo Ewalds & Jacklynn Stott & Shakir Mohamed & Peter Battaglia & Remi Lam & Matthew Willson, 2025. "Probabilistic weather forecasting with machine learning," Nature, Nature, vol. 637(8044), pages 84-90, January.
    2. Bentsen, Lars Ødegaard & Warakagoda, Narada Dilp & Stenbro, Roy & Engelstad, Paal, 2023. "Spatio-temporal wind speed forecasting using graph networks and novel Transformer architectures," Applied Energy, Elsevier, vol. 333(C).
    3. Ouyang, Tinghui & Zha, Xiaoming & Qin, Liang & He, Yusen & Tang, Zhenhao, 2019. "Prediction of wind power ramp events based on residual correction," Renewable Energy, Elsevier, vol. 136(C), pages 781-792.
    4. Shahram Hanifi & Xiaolei Liu & Zi Lin & Saeid Lotfian, 2020. "A Critical Review of Wind Power Forecasting Methods—Past, Present and Future," Energies, MDPI, vol. 13(15), pages 1-24, July.
    5. Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.
    6. Alessandrini, S. & Sperati, S. & Pinson, P., 2013. "A comparison between the ECMWF and COSMO Ensemble Prediction Systems applied to short-term wind power forecasting on real data," Applied Energy, Elsevier, vol. 107(C), pages 271-280.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdulelah Alkesaiberi & Fouzi Harrou & Ying Sun, 2022. "Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study," Energies, MDPI, vol. 15(7), pages 1-24, March.
    2. Abdulrahman A. Alghamdi & Abdelhameed Ibrahim & El-Sayed M. El-Kenawy & Abdelaziz A. Abdelhamid, 2023. "Renewable Energy Forecasting Based on Stacking Ensemble Model and Al-Biruni Earth Radius Optimization Algorithm," Energies, MDPI, vol. 16(3), pages 1-30, January.
    3. Khaled Yousef & Baris Yuce & Allen He, 2025. "A Hybrid Deep Learning Framework for Wind Speed Prediction with Snake Optimizer and Feature Explainability," Sustainability, MDPI, vol. 17(12), pages 1-25, June.
    4. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    5. Chen, Xin & Ye, Xiaoling & Shi, Jian & Zhang, Yingchao & Xiong, Xiong, 2024. "A spatial transfer-based hybrid model for wind speed forecasting," Energy, Elsevier, vol. 313(C).
    6. Yiqi Chu & Chengcai Li & Yefang Wang & Jing Li & Jian Li, 2016. "A Long-Term Wind Speed Ensemble Forecasting System with Weather Adapted Correction," Energies, MDPI, vol. 9(11), pages 1-20, October.
    7. Hongxia Wang & Xiao Jin & Jianian Wang & Hongxia Hao, 2023. "Nonparametric Estimation for High-Dimensional Space Models Based on a Deep Neural Network," Mathematics, MDPI, vol. 11(18), pages 1-37, September.
    8. Cheng-Yu Ho & Ke-Sheng Cheng & Chi-Hang Ang, 2023. "Utilizing the Random Forest Method for Short-Term Wind Speed Forecasting in the Coastal Area of Central Taiwan," Energies, MDPI, vol. 16(3), pages 1-18, January.
    9. Gao, Jiaxin & Cheng, Yuanqi & Zhang, Dongxiao & Chen, Yuntian, 2025. "Physics-constrained wind power forecasting aligned with probability distributions for noise-resilient deep learning," Applied Energy, Elsevier, vol. 383(C).
    10. Guodong Liu & Maximiliano F. Ferrari & Thomas B. Ollis & Kevin Tomsovic, 2022. "An MILP-Based Distributed Energy Management for Coordination of Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-20, September.
    11. Kim, Daeyoung & Ryu, Geonhwa & Moon, Chaejoo & Kim, Bumsuk, 2024. "Accuracy of a short-term wind power forecasting model based on deep learning using LiDAR-SCADA integration: A case study of the 400-MW Anholt offshore wind farm," Applied Energy, Elsevier, vol. 373(C).
    12. Kabir Bashir Shariff & Sylvain S. Guillou, 2025. "Towards a Generalized Tidal Turbine Wake Analytical Model for Turbine Placement in Array Accounting for Added Turbulence," Energies, MDPI, vol. 18(9), pages 1-27, April.
    13. Guo, Nai-Zhi & Shi, Ke-Zhong & Li, Bo & Qi, Liang-Wen & Wu, Hong-Hui & Zhang, Zi-Liang & Xu, Jian-Zhong, 2022. "A physics-inspired neural network model for short-term wind power prediction considering wake effects," Energy, Elsevier, vol. 261(PA).
    14. Junwei Fu & Yuna Ni & Yuming Ma & Jian Zhao & Qiuyi Yang & Shiyi Xu & Xiang Zhang & Yuhua Liu, 2023. "A Visualization-Based Ramp Event Detection Model for Wind Power Generation," Energies, MDPI, vol. 16(3), pages 1-16, January.
    15. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    16. Li, Rui & Zhang, Jincheng & Zhao, Xiaowei, 2022. "Dynamic wind farm wake modeling based on a Bilateral Convolutional Neural Network and high-fidelity LES data," Energy, Elsevier, vol. 258(C).
    17. Yang, Shanghui & Deng, Xiaowei & Li, Qinglan, 2025. "A joint optimization framework for power and fatigue life based on cooperative wake steering of wind farm," Energy, Elsevier, vol. 319(C).
    18. Luo, Zhaohui & Wang, Longyan & Xu, Jian & Wang, Zilu & Yuan, Jianping & Tan, Andy C.C., 2024. "A reduced order modeling-based machine learning approach for wind turbine wake flow estimation from sparse sensor measurements," Energy, Elsevier, vol. 294(C).
    19. Yang, Shanghui & Deng, Xiaowei & Ti, Zilong & Yan, Bowen & Yang, Qingshan, 2022. "Cooperative yaw control of wind farm using a double-layer machine learning framework," Renewable Energy, Elsevier, vol. 193(C), pages 519-537.
    20. Jiang, Wenjun & Liu, Bo & Liang, Yang & Gao, Huanxiang & Lin, Pengfei & Zhang, Dongqin & Hu, Gang, 2024. "Applicability analysis of transformer to wind speed forecasting by a novel deep learning framework with multiple atmospheric variables," Applied Energy, Elsevier, vol. 353(PB).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2975-:d:1672185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.