Author
Listed:
- Han Zou
(School of Civil Engineering Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan 430068, China)
- Yuqing Li
(School of Civil Engineering Architecture and Environment, Hubei University of Technology, Wuhan 430068, China)
- Cong Sun
(School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518060, China)
- Ting Wu
(School of Civil Engineering Architecture and Environment, Hubei University of Technology, Wuhan 430068, China)
Abstract
As the largest carbon emitter globally, China has formally adopted dual-carbon targets of achieving a carbon peak by 2030 and carbon neutrality by 2060. Urban renewal, as an essential approach to promoting sustainable urban development, plays a critical role in realizing dual-carbon targets. However, carbon emission reduction in urban renewal involves multiple stakeholders with divergent interests, significantly hindering the effective achievement of emission reduction goals. In this context, this paper innovatively selects the government, developers, and construction enterprises as game subjects and constructs an evolutionary game model of the three parties’ participation in carbon emission reduction from the perspective of carbon trading. Through simulation analysis, it explores the impacts of government subsidies, penalty mechanisms, additional benefits, and carbon trading on stakeholder decision-making. The findings indicate the following: (1) The emission reduction process in urban renewal follows an evolutionary pattern of the initial, growth, and mature stages. (2) Sensitivity analysis demonstrates that government subsidies and penalty mechanisms play important roles. (3) Additional benefits serve as intrinsic motivation for developers and construction enterprises to reduce emissions, while a well-developed carbon trading market provides additional incentives and benefit pathways for stakeholders. By integrating urban renewal with carbon trading for the first time, this study aims to enhance stakeholders’ engagement in emission reduction and provide practical reference suggestions, thereby contributing to sustainable urban development.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:5089-:d:1670052. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.