IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p4957-d1666502.html
   My bibliography  Save this article

Sustainable Metal Recovery from Electroplating Sludge: Bridging Technology and Environmental Regulation

Author

Listed:
  • Jinfei Ma

    (Institute of Urban Rule of Law and Development, Southeast University, Nanjing 210096, China
    These authors contributed equally to this work.)

  • Zhenfeng Xiong

    (Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing 210096, China
    These authors contributed equally to this work.)

Abstract

Electroplating sludge, a hazardous waste generated from the electroplating industry, contains significant quantities of heavy metals such as Cu, Cr, and Ni. Improper disposal of these metals poses severe environmental and health risks. This study proposes a comprehensive resource recovery process for Cu, Ni, and Cr from electroplating sludge, involving leaching, solvent extraction, stripping, and precipitation. The extraction efficiency of three extractants (P507, LIX984, and M5640) was evaluated, with M5640 demonstrating superior performance in Cu recovery (near 100%) at pH 3.0–4.0. Multi-stage extraction and stripping experiments further optimized metal recovery, achieving high efficiencies for Cu, Cr, and Ni. The recovered metals were precipitated as CuCO 3 , CrPO 4 , and Ni(OH) 2 , with wastewater discharge meeting environmental discharge standards. This study not only enriches the technical approaches for the selective recovery of high-value metals from electroplating sludge with complex components, but also closely aligns with the laws, regulations, and policies of the Chinese government regarding environmental governance. It serves as a driving force for promoting the construction of “waste-free cities” and the establishment of a closed-loop circular economy industrial chain.

Suggested Citation

  • Jinfei Ma & Zhenfeng Xiong, 2025. "Sustainable Metal Recovery from Electroplating Sludge: Bridging Technology and Environmental Regulation," Sustainability, MDPI, vol. 17(11), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4957-:d:1666502
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/4957/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/4957/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    2. Li, Ke & Lin, Boqiang, 2016. "Impact of energy conservation policies on the green productivity in China’s manufacturing sector: Evidence from a three-stage DEA model," Applied Energy, Elsevier, vol. 168(C), pages 351-363.
    3. Song, ChiUng & Oh, Wankeun, 2015. "Determinants of innovation in energy intensive industry and implications for energy policy," Energy Policy, Elsevier, vol. 81(C), pages 122-130.
    4. Fang, Zhenming & Kong, Xiaoran & Sensoy, Ahmet & Cui, Xin & Cheng, Feiyang, 2021. "Government’s awareness of Environmental protection and corporate green innovation: A natural experiment from the new environmental protection law in China," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 294-312.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Dongyang, 2021. "Marketization, environmental regulation, and eco-friendly productivity: A Malmquist–Luenberger index for pollution emissions of large Chinese firms," Journal of Asian Economics, Elsevier, vol. 76(C).
    2. Yang, Guo-liang & Fukuyama, Hirofumi & Song, Yao-yao, 2019. "Estimating capacity utilization of Chinese manufacturing industries," Socio-Economic Planning Sciences, Elsevier, vol. 67(C), pages 94-110.
    3. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    4. Xiang Liu & Jia Liu, 2016. "Measurement of Low Carbon Economy Efficiency with a Three-Stage Data Envelopment Analysis: A Comparison of the Largest Twenty CO 2 Emitting Countries," IJERPH, MDPI, vol. 13(11), pages 1-14, November.
    5. Sueyoshi, Toshiyuki & Yuan, Yan, 2017. "Social sustainability measured by intermediate approach for DEA environmental assessment: Chinese regional planning for economic development and pollution prevention," Energy Economics, Elsevier, vol. 66(C), pages 154-166.
    6. Haoran Zhao & Huiru Zhao & Sen Guo, 2018. "Operational Efficiency of Chinese Provincial Electricity Grid Enterprises: An Evaluation Employing a Three-Stage Data Envelopment Analysis (DEA) Model," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    7. Sueyoshi, Toshiyuki & Goto, Mika & Wang, Derek, 2017. "Malmquist index measurement for sustainability enhancement in Chinese municipalities and provinces," Energy Economics, Elsevier, vol. 67(C), pages 554-571.
    8. Li, Hai-ling & Zhu, Xue-hong & Chen, Jin-yu & Jiang, Fei-tao, 2019. "Environmental regulations, environmental governance efficiency and the green transformation of China's iron and steel enterprises," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    9. Cui, Xin & Wang, Chunfeng & Sensoy, Ahmet & Liao, Jing & Xie, Xiaochen, 2023. "Economic policy uncertainty and green innovation: Evidence from China," Economic Modelling, Elsevier, vol. 118(C).
    10. Zheng, Suyi & Wen, Jiandong, 2024. "Green public procurement and corporate environmental performance: An empirical analysis based on data from green procurement contracts," International Review of Economics & Finance, Elsevier, vol. 96(PA).
    11. Pengyu Ren & Zhaoxia Liu, 2021. "Efficiency Evaluation of China’s Public Sports Services: A Three-Stage DEA Model," IJERPH, MDPI, vol. 18(20), pages 1-12, October.
    12. Geng, ZhiQiang & Dong, JunGen & Han, YongMing & Zhu, QunXiong, 2017. "Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes," Applied Energy, Elsevier, vol. 205(C), pages 465-476.
    13. Licheng Yang & Shijie Song & Chunlin Liu, 2024. "Green signals: The impact of environmental protection support policies on firms' green innovation," Business Strategy and the Environment, Wiley Blackwell, vol. 33(4), pages 3258-3278, May.
    14. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
    15. Tingli Liu & Yu Fang & Qianqian Shi & Lei Ren, 2023. "Research on the Effect of the New Environmental Protection Law on the Market Competitiveness of China’s Heavily Polluting Enterprises," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    16. Li, Ke & Lin, Boqiang, 2018. "How to promote energy efficiency through technological progress in China?," Energy, Elsevier, vol. 143(C), pages 812-821.
    17. Qin He & Yaowu Han & Lei Wang, 2021. "The impact of environmental regulation on green total factor productivity: An empirical analysis," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-15, November.
    18. Fan, Jing-Li & Zhang, Hao & Zhang, Xian, 2020. "Unified efficiency measurement of coal-fired power plants in China considering group heterogeneity and technological gaps," Energy Economics, Elsevier, vol. 88(C).
    19. Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).
    20. Bo Wang & Cheng Peng & Jiujiang Wu & Fangwei Liao, 2022. "The Impact of Political Connections on Corporate Green Innovation: The Mediating Effect of Corporate Social Responsibility and the Moderating Effect of Environmental Public Opinion," Sustainability, MDPI, vol. 14(8), pages 1-18, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4957-:d:1666502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.