IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p4957-d1666502.html
   My bibliography  Save this article

Sustainable Metal Recovery from Electroplating Sludge: Bridging Technology and Environmental Regulation

Author

Listed:
  • Jinfei Ma

    (Institute of Urban Rule of Law and Development, Southeast University, Nanjing 210096, China
    These authors contributed equally to this work.)

  • Zhenfeng Xiong

    (Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing 210096, China
    These authors contributed equally to this work.)

Abstract

Electroplating sludge, a hazardous waste generated from the electroplating industry, contains significant quantities of heavy metals such as Cu, Cr, and Ni. Improper disposal of these metals poses severe environmental and health risks. This study proposes a comprehensive resource recovery process for Cu, Ni, and Cr from electroplating sludge, involving leaching, solvent extraction, stripping, and precipitation. The extraction efficiency of three extractants (P507, LIX984, and M5640) was evaluated, with M5640 demonstrating superior performance in Cu recovery (near 100%) at pH 3.0–4.0. Multi-stage extraction and stripping experiments further optimized metal recovery, achieving high efficiencies for Cu, Cr, and Ni. The recovered metals were precipitated as CuCO 3 , CrPO 4 , and Ni(OH) 2 , with wastewater discharge meeting environmental discharge standards. This study not only enriches the technical approaches for the selective recovery of high-value metals from electroplating sludge with complex components, but also closely aligns with the laws, regulations, and policies of the Chinese government regarding environmental governance. It serves as a driving force for promoting the construction of “waste-free cities” and the establishment of a closed-loop circular economy industrial chain.

Suggested Citation

  • Jinfei Ma & Zhenfeng Xiong, 2025. "Sustainable Metal Recovery from Electroplating Sludge: Bridging Technology and Environmental Regulation," Sustainability, MDPI, vol. 17(11), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4957-:d:1666502
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/4957/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/4957/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Ke & Lin, Boqiang, 2016. "Impact of energy conservation policies on the green productivity in China’s manufacturing sector: Evidence from a three-stage DEA model," Applied Energy, Elsevier, vol. 168(C), pages 351-363.
    2. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    3. Fang, Zhenming & Kong, Xiaoran & Sensoy, Ahmet & Cui, Xin & Cheng, Feiyang, 2021. "Government’s awareness of Environmental protection and corporate green innovation: A natural experiment from the new environmental protection law in China," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 294-312.
    4. Song, ChiUng & Oh, Wankeun, 2015. "Determinants of innovation in energy intensive industry and implications for energy policy," Energy Policy, Elsevier, vol. 81(C), pages 122-130.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang Liu & Jia Liu, 2016. "Measurement of Low Carbon Economy Efficiency with a Three-Stage Data Envelopment Analysis: A Comparison of the Largest Twenty CO 2 Emitting Countries," IJERPH, MDPI, vol. 13(11), pages 1-14, November.
    2. Zhang, Dongyang, 2021. "Marketization, environmental regulation, and eco-friendly productivity: A Malmquist–Luenberger index for pollution emissions of large Chinese firms," Journal of Asian Economics, Elsevier, vol. 76(C).
    3. Sueyoshi, Toshiyuki & Yuan, Yan, 2017. "Social sustainability measured by intermediate approach for DEA environmental assessment: Chinese regional planning for economic development and pollution prevention," Energy Economics, Elsevier, vol. 66(C), pages 154-166.
    4. Haoran Zhao & Huiru Zhao & Sen Guo, 2018. "Operational Efficiency of Chinese Provincial Electricity Grid Enterprises: An Evaluation Employing a Three-Stage Data Envelopment Analysis (DEA) Model," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    5. Yang, Guo-liang & Fukuyama, Hirofumi & Song, Yao-yao, 2019. "Estimating capacity utilization of Chinese manufacturing industries," Socio-Economic Planning Sciences, Elsevier, vol. 67(C), pages 94-110.
    6. Sueyoshi, Toshiyuki & Goto, Mika & Wang, Derek, 2017. "Malmquist index measurement for sustainability enhancement in Chinese municipalities and provinces," Energy Economics, Elsevier, vol. 67(C), pages 554-571.
    7. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    8. Li, Hai-ling & Zhu, Xue-hong & Chen, Jin-yu & Jiang, Fei-tao, 2019. "Environmental regulations, environmental governance efficiency and the green transformation of China's iron and steel enterprises," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    9. Shanwei Li & Yongchang Wu & Qi Yu & Xueyuan Chen, 2023. "National Agricultural Science and Technology Parks in China: Distribution Characteristics, Innovation Efficiency, and Influencing Factors," Agriculture, MDPI, vol. 13(7), pages 1-26, July.
    10. Shujun Chao & Shanyong Wang & Haidong Li & Shu Yang, 2023. "The power of culture: Does Confucian culture contribute to corporate environmental information disclosure?," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(5), pages 2435-2456, September.
    11. Juan Tang & Fangming Qin, 2022. "Analyzing the impact of local government competition on green total factor productivity from the factor market distortion perspective: based on the three stage DEA model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14298-14326, December.
    12. Hongwei Liu & Ronglu Yang & Zhixiang Zhou & Dacheng Huang, 2020. "Regional Green Eco-Efficiency in China: Considering Energy Saving, Pollution Treatment, and External Environmental Heterogeneity," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    13. Bai-Chen Xie & Jie Gao & Shuang Zhang & ZhongXiang Zhang, 2017. "What Factors Affect the Competiveness of Power Generation Sector in China? An Analysis Based on Game Cross-efficiency," Working Papers 2017.12, Fondazione Eni Enrico Mattei.
    14. Xu, Xiaoying & Jin, Mei & Gong, Xinshu, 2024. "Local environmental goal constraint intensity and corporate ESG performance: An empirical observation based on China," Finance Research Letters, Elsevier, vol. 62(PB).
    15. Zhang, Yue-Jun & Liu, Zhao & Zhou, Si-Ming & Qin, Chang-Xiong & Zhang, Huan, 2018. "The impact of China's Central Rise Policy on carbon emissions at the stage of operation in road sector," Economic Modelling, Elsevier, vol. 71(C), pages 159-173.
    16. Dziallas, Marisa & Blind, Knut, 2019. "Innovation indicators throughout the innovation process: An extensive literature analysis," Technovation, Elsevier, vol. 80, pages 3-29.
    17. Zhang, Jian & Yu, Chin-Hsien & Zhao, Jinsong & Lee, Chi-Chuan, 2025. "How does corporate digital transformation affect green innovation? Evidence from China's enterprise data," Energy Economics, Elsevier, vol. 142(C).
    18. Jiamin Liu & Xiaoyu Ma & Bin Zhao & Qi Cui & Sisi Zhang & Jiaoning Zhang, 2023. "Mandatory Environmental Regulation, Enterprise Labor Demand and Green Innovation Transformation: A Quasi-Experiment from China’s New Environmental Protection Law," Sustainability, MDPI, vol. 15(14), pages 1-31, July.
    19. Henry Kwabena Kokofu & Gordon Kofi Sarfo-Adu & Mark Aferdi Dadebo & Gladys Nkrumah & David Kwaku Galley, 2022. "Sustaining the Environment in an Era of Small-Scale Mining in Ghana: Optimizing the Role of Institutions," International Journal of Global Sustainability, Macrothink Institute, vol. 6(1), pages 1-26, December.
    20. Elfarra, Barakat & Yasmeen, Rizwana & Shah, Wasi Ul Hassan, 2024. "The impact of energy security, energy mix, technological advancement, trade openness, and political stability on energy efficiency: Evidence from Arab countries," Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4957-:d:1666502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.