IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p2762-d1364680.html
   My bibliography  Save this article

A Morphing-Based Future Scenario Generation Method for Stochastic Power System Analysis

Author

Listed:
  • Yanna Gao

    (Guangzhou Power Supply Bureau, Guangdong Power Grid Co., Ltd., Guangzhou 510620, China)

  • Hong Dong

    (Guangzhou Power Supply Bureau, Guangdong Power Grid Co., Ltd., Guangzhou 510620, China)

  • Liujun Hu

    (Guangzhou Power Supply Bureau, Guangdong Power Grid Co., Ltd., Guangzhou 510620, China)

  • Zihan Lin

    (Guangzhou Power Supply Bureau, Guangdong Power Grid Co., Ltd., Guangzhou 510620, China)

  • Fanhong Zeng

    (Guangzhou Power Supply Bureau, Guangdong Power Grid Co., Ltd., Guangzhou 510620, China)

  • Cantao Ye

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Jixiang Zhang

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

Abstract

As multiple wind and solar photovoltaic farms are integrated into power systems, precise scenario generation becomes challenging due to the interdependence of power generation and future climate change. Future climate data derived from obsolete climate models, featuring diminished accuracy, less-refined spatial resolution, and a limited range of climate scenarios compared to more recent models, are still in use. In this paper, a morphing-based approach is proposed for generating future scenarios, incorporating the interdependence of power generation among multiple wind and photovoltaic farms using copula theory. The K-means method was employed for scenario generation. The results of our study indicate that the average annual variations in dry-bulb temperature (DBT), global horizontal irradiance (GHI), and wind speed (WS) are projected to increase by approximately 0.4 to 1.9 °C, 7.5 to 20.4 W/m 2 , and 0.3 to 1.7 m/s, respectively, in the forthcoming scenarios of the four considered Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). It seems that accumulated maximum wind electricity output (WEO) and solar electricity output (SEO) will increase from 0.9% to 7.3% and 1.1% to 6.8%, respectively, in 2050.

Suggested Citation

  • Yanna Gao & Hong Dong & Liujun Hu & Zihan Lin & Fanhong Zeng & Cantao Ye & Jixiang Zhang, 2024. "A Morphing-Based Future Scenario Generation Method for Stochastic Power System Analysis," Sustainability, MDPI, vol. 16(7), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2762-:d:1364680
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/2762/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/2762/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    2. P. Pinson, 2012. "Very-short-term probabilistic forecasting of wind power with generalized logit–normal distributions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(4), pages 555-576, August.
    3. Ehsan, Ali & Yang, Qiang, 2018. "Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques," Applied Energy, Elsevier, vol. 210(C), pages 44-59.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sleire, Anders D. & Støve, Bård & Otneim, Håkon & Berentsen, Geir Drage & Tjøstheim, Dag & Haugen, Sverre Hauso, 2022. "Portfolio allocation under asymmetric dependence in asset returns using local Gaussian correlations," Finance Research Letters, Elsevier, vol. 46(PB).
    2. Zhang, Dalu, 2014. "Vine copulas and applications to the European Union sovereign debt analysis," International Review of Financial Analysis, Elsevier, vol. 36(C), pages 46-56.
    3. Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
    4. Bassetti, Federico & De Giuli, Maria Elena & Nicolino, Enrica & Tarantola, Claudia, 2018. "Multivariate dependence analysis via tree copula models: An application to one-year forward energy contracts," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1107-1121.
    5. Rubén Albeiro Loaiza Maya & Jose Eduardo Gomez-Gonzalez & Luis Fernando Melo Velandia, 2015. "Latin American Exchange Rate Dependencies: A Regular Vine Copula Approach," Contemporary Economic Policy, Western Economic Association International, vol. 33(3), pages 535-549, July.
    6. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    7. Schinke-Nendza, A. & von Loeper, F. & Osinski, P. & Schaumann, P. & Schmidt, V. & Weber, C., 2021. "Probabilistic forecasting of photovoltaic power supply — A hybrid approach using D-vine copulas to model spatial dependencies," Applied Energy, Elsevier, vol. 304(C).
    8. Beatrice D. Simo-Kengne & Kofi A. Ababio & Jules Mba & Ur Koumba, 2018. "Behavioral portfolio selection and optimization: an application to international stocks," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 32(3), pages 311-328, August.
    9. Xiangying Meng & Xianhua Wei, 2018. "Systematic Correlation is Priced as Risk Factor," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 8(6), pages 1-2.
    10. Tai-Hsin Huang & Nan-Hung Liu & Subal C. Kumbhakar, 2018. "Joint estimation of the Lerner index and cost efficiency using copula methods," Empirical Economics, Springer, vol. 54(2), pages 799-822, March.
    11. Mohseni, Soheil & Brent, Alan C. & Burmester, Daniel, 2020. "A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid," Applied Energy, Elsevier, vol. 259(C).
    12. Aristidis Nikoloulopoulos & Harry Joe, 2015. "Factor Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 126-150, March.
    13. Grothe, Oliver & Schnieders, Julius & Segers, Johan, 2013. "Measuring Association and Dependence Between Random Vectors," LIDAM Discussion Papers ISBA 2013026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
    15. Benoumechiara Nazih & Bousquet Nicolas & Michel Bertrand & Saint-Pierre Philippe, 2020. "Detecting and modeling critical dependence structures between random inputs of computer models," Dependence Modeling, De Gruyter, vol. 8(1), pages 263-297, January.
    16. M. Jones & Arthur Pewsey & Shogo Kato, 2015. "On a class of circulas: copulas for circular distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 843-862, October.
    17. Dominique Guegan & Pierre-André Maugis, 2010. "An Econometric Study of Vine Copulas," Documents de travail du Centre d'Economie de la Sorbonne 10040, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    18. Pavel Krupskii, 2017. "Copula-based measures of reflection and permutation asymmetry and statistical tests," Statistical Papers, Springer, vol. 58(4), pages 1165-1187, December.
    19. David Walsh-Jones & Daniel Jones & Christoph Reisinger, 2014. "Modelling of dependence in high-dimensional financial time series by cluster-derived canonical vines," Papers 1411.4970, arXiv.org.
    20. Hobæk Haff, Ingrid, 2012. "Comparison of estimators for pair-copula constructions," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 91-105.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2762-:d:1364680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.