IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p2127-d1351058.html
   My bibliography  Save this article

Analyzing the Shelter Site Selection Criteria for Disaster Preparedness Using Best–Worst Method under Interval Type-2 Fuzzy Sets

Author

Listed:
  • Erkan Celik

    (Department of Transportation and Logistics, Istanbul University, Fatih, 34116 İstanbul, Turkey)

Abstract

Shelters are vital for affected people after a disaster because of the accommodation, safety, and security. In this paper, we analyze the shelter site selection criteria for disaster preparedness applying the best–worst method under interval type-2 fuzzy sets. The proposed approach utilizes the advantages of fewer pairwise comparisons with the best–worst method and better reflection of uncertainty with interval type-2 fuzzy sets. For this reason, the criteria are determined based on a literature review and the opinion of nine disaster experts. The experts have worked as disaster officers in a variety of locations, including Sivrice (Elazığ), Pazarcık, and Elbistan (Kahramanmaras) and Syrian refugee camps such as Nizip container city. In this step, 6 main criteria and 25 sub-criteria are evaluated using the proposed approach. According to the nine experts’ opinions, the most important main criterion is determined as proximity. Distribution center capacity, adequate distribution logistics personnel, available electricity, distance to settlement, and landslides and flooding are also determined as the five most important sub-criteria. For disaster preparedness, responsible organizations and managers should consider these important criteria for temporary shelter site selection.

Suggested Citation

  • Erkan Celik, 2024. "Analyzing the Shelter Site Selection Criteria for Disaster Preparedness Using Best–Worst Method under Interval Type-2 Fuzzy Sets," Sustainability, MDPI, vol. 16(5), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2127-:d:1351058
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/2127/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/2127/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Berfin Şenik & Osman Uzun, 2021. "An assessment on size and site selection of emergency assembly points and temporary shelter areas in Düzce," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1587-1602, January.
    2. Manuela Nappi & João Souza, 2015. "Disaster management: hierarchical structuring criteria for selection and location of temporary shelters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2421-2436, February.
    3. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    4. Yunjia Ma & Wei Xu & Lianjie Qin & Xiujuan Zhao, 2019. "Site Selection Models in Natural Disaster Shelters: A Review," Sustainability, MDPI, vol. 11(2), pages 1-24, January.
    5. Mi, Xiaomei & Tang, Ming & Liao, Huchang & Shen, Wenjing & Lev, Benjamin, 2019. "The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what's next?," Omega, Elsevier, vol. 87(C), pages 205-225.
    6. Alexander Fekete & Lisa Bross & Steffen Krause & Florian Neisser & Katerina Tzavella, 2021. "Bridging Gaps in Minimum Humanitarian Standards and Shelter Planning by Critical Infrastructures," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    7. Kılcı, Fırat & Kara, Bahar Yetiş & Bozkaya, Burçin, 2015. "Locating temporary shelter areas after an earthquake: A case for Turkey," European Journal of Operational Research, Elsevier, vol. 243(1), pages 323-332.
    8. Rezaei, Jafar, 2016. "Best-worst multi-criteria decision-making method: Some properties and a linear model," Omega, Elsevier, vol. 64(C), pages 126-130.
    9. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Li & Wei Wu & Xiufeng Li & Yongquan Li & Xueru Gong & Shuai Zhang & Ruijiao Ma & Xiaowei Liu & Meng Zou, 2025. "A Hybrid Approach Combining Scenario Deduction and Type-2 Fuzzy Set-Based Bayesian Network for Failure Risk Assessment in Solar Tower Power Plants," Sustainability, MDPI, vol. 17(11), pages 1-42, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anchal Patil & Vipulesh Shardeo & Ashish Dwivedi & Noor Ulain Rizvi & Sanjoy Kumar Paul, 2024. "A framework to evaluate the temporary hospital locations in wake of COVID-19 pandemic: implications to healthcare operations," Operations Management Research, Springer, vol. 17(2), pages 438-452, June.
    2. Liang, Fuqi & Brunelli, Matteo & Rezaei, Jafar, 2020. "Consistency issues in the best worst method: Measurements and thresholds," Omega, Elsevier, vol. 96(C).
    3. Besharati Fard, Moein & Moradian, Parisa & Emarati, Mohammadreza & Ebadi, Mehdi & Gholamzadeh Chofreh, Abdoulmohammad & Klemeŝ, Jiří Jaromír, 2022. "Ground-mounted photovoltaic power station site selection and economic analysis based on a hybrid fuzzy best-worst method and geographic information system: A case study Guilan province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    4. Sarbast Moslem & Muhammet Gul & Danish Farooq & Erkan Celik & Omid Ghorbanzadeh & Thomas Blaschke, 2020. "An Integrated Approach of Best-Worst Method (BWM) and Triangular Fuzzy Sets for Evaluating Driver Behavior Factors Related to Road Safety," Mathematics, MDPI, vol. 8(3), pages 1-20, March.
    5. Kusi-Sarpong, Simonov & Orji, Ifeyinwa Juliet & Gupta, Himanshu & Kunc, Martin, 2021. "Risks associated with the implementation of big data analytics in sustainable supply chains," Omega, Elsevier, vol. 105(C).
    6. Wu, Qun & Liu, Xinwang & Zhou, Ligang & Qin, Jindong & Rezaei, Jafar, 2024. "An analytical framework for the best–worst method," Omega, Elsevier, vol. 123(C).
    7. Fumin Deng & Yanjie Li & Huirong Lin & Jinrui Miao & Xuedong Liang, 2020. "A BWM-TOPSIS Hazardous Waste Inventory Safety Risk Evaluation," IJERPH, MDPI, vol. 17(16), pages 1-18, August.
    8. Arman Nedjati & Mohammad Yazdi & Rouzbeh Abbassi, 2022. "A sustainable perspective of optimal site selection of giant air-purifiers in large metropolitan areas," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8747-8778, June.
    9. Elkadeem, M.R. & Younes, Ali & Sharshir, Swellam W. & Campana, Pietro Elia & Wang, Shaorong, 2021. "Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis," Applied Energy, Elsevier, vol. 295(C).
    10. Amin Vafadarnikjoo & Madjid Tavana & Tiago Botelho & Konstantinos Chalvatzis, 2020. "A neutrosophic enhanced best–worst method for considering decision-makers’ confidence in the best and worst criteria," Annals of Operations Research, Springer, vol. 289(2), pages 391-418, June.
    11. Cavallo, Bice & Ishizaka, Alessio, 2025. "A comparative study on precision of direct evaluations, the Pairwise Comparisons Method and the Best-Worst Method," Omega, Elsevier, vol. 130(C).
    12. Tavana, Madjid & Mina, Hassan & Santos-Arteaga, Francisco J., 2023. "A general Best-Worst method considering interdependency with application to innovation and technology assessment at NASA," Journal of Business Research, Elsevier, vol. 154(C).
    13. Hashem Omrani & Arash Alizadeh & Ali Emrouznejad & Tamara Teplova, 2024. "Data envelopment analysis model with decision makers’ preferences: a robust credibility approach," Annals of Operations Research, Springer, vol. 339(3), pages 1269-1306, August.
    14. Samieinasab, Mina & Hamid, Mahdi & Rabbani, Masoud, 2022. "An integrated resilience engineering-lean management approach to performance assessment and improvement of clinical departments," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    15. Maghsoud Amiri & Mohammad Hashemi-Tabatabaei & Mohammad Ghahremanloo & Mehdi Keshavarz-Ghorabaee & Edmundas Kazimieras Zavadskas & Arturas Kaklauskas, 2021. "Evaluating Life Cycle of Buildings Using an Integrated Approach Based on Quantitative-Qualitative and Simplified Best-Worst Methods (QQM-SBWM)," Sustainability, MDPI, vol. 13(8), pages 1-28, April.
    16. Jiri Mazurek & Radomír Perzina & Dominik Strzałka & Bartosz Kowal & Paweł Kuraś & Barbora Petrů Puhrová & Robert Rajs, 2024. "Is the best–worst method path dependent? Evidence from an empirical study," 4OR, Springer, vol. 22(3), pages 387-409, September.
    17. Burak Can Altay & Abdullah Erdem Boztas & Abdullah Okumuş & Muhammet Gul & Erkan Çelik, 2023. "How Will Autonomous Vehicles Decide in Case of an Accident? An Interval Type-2 Fuzzy Best–Worst Method for Weighting the Criteria from Moral Values Point of View," Sustainability, MDPI, vol. 15(11), pages 1-20, June.
    18. Aziz Naghizadeh Vardin & Ramin Ansari & Mohammad Khalilzadeh & Jurgita Antucheviciene & Romualdas Bausys, 2021. "An Integrated Decision Support Model Based on BWM and Fuzzy-VIKOR Techniques for Contractor Selection in Construction Projects," Sustainability, MDPI, vol. 13(12), pages 1-28, June.
    19. Corrente, Salvatore & Greco, Salvatore & Rezaei, Jafar, 2024. "Better decisions with less cognitive load: The Parsimonious BWM," Omega, Elsevier, vol. 126(C).
    20. Xiao-Kang Wang & Wen-Hui Hou & Chao Song & Min-Hui Deng & Yong-Yi Li & Jian-Qiang Wang, 2021. "BW-MaxEnt: A Novel MCDM Method for Limited Knowledge," Mathematics, MDPI, vol. 9(14), pages 1-17, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2127-:d:1351058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.