IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i4p1514-d1337148.html
   My bibliography  Save this article

Geospatial Analysis of Wind Energy Siting Suitability in the East African Community

Author

Listed:
  • Samuel Bimenyimana

    (Intelligence and Automation in Construction Provincial Higher-Educational Engineering Research Centre, Huaqiao University, Xiamen 361021, China
    Hello Renewables Ltd., Kigali, Rwanda)

  • Chen Wang

    (Intelligence and Automation in Construction Provincial Higher-Educational Engineering Research Centre, Huaqiao University, Xiamen 361021, China
    Civil Engineering Department, Huaqiao University, Xiamen 361021, China)

  • Godwin Norense Osarumwense Asemota

    (African Centre of Excellence in Energy for Sustainable Development, University of Rwanda, Kigali, Rwanda
    Department of Electrical and Electronics Engineering, Morayo College, Thika 7053-01000, Kenya)

  • Jeanne Paula Ihirwe

    (Department of Economics and Management, Hebei University of Technology, Tianjin 300130, China)

  • Mucyo Ndera Tuyizere

    (Center for Geographical Information System and Remote Sensing, University of Rwanda, Kigali, Rwanda)

  • Fidele Mwizerwa

    (Center for Geographical Information System and Remote Sensing, University of Rwanda, Kigali, Rwanda
    Department of Spatial Planning, College of Sciences and Technology University, University of Rwanda, Kigali, Rwanda)

  • Yiyi Mo

    (Civil Engineering Department, Huaqiao University, Xiamen 361021, China)

  • Martine Abiyese

    (Hello Renewables Ltd., Kigali, Rwanda
    African Centre of Excellence in Energy for Sustainable Development, University of Rwanda, Kigali, Rwanda)

Abstract

Site investigation is essential for developing and constructing a dependable and effective wind engineering project. Also, the kinetic energy of moving air, used to drive a wind turbine, produces electricity. Having seen the shortage of previous studies on wind energy sites’ suitability across Africa and having read about the abundance of untapped wind energy resources in the East African region, this paper used Geographical Information System (GIS), multi-criteria, and Analytic Hierarchy techniques to provide a geospatial analysis of wind energy technology siting suitability in Eastern African Community Countries. Different data were acquired and processed from numerous open-access databases (Global Wind atlas, Regional Center for Mapping of Resources for Development (RCMRD), African Geoportal, East African community website, and Energy data Info.org). The results reveal Kenya has large parts of its land areas highly appropriate for wind energy siting (15.26%) and 1.55% of its land classified as unsuitable for wind energy generation. The rates of suitability and unsuitability were respectively 26.57% and 4.87% for Burundi, 20.6% and 10.21% for Rwanda, 20.39% and 10.44% for Tanzania, and 4.65% and 27.15% for South Sudan. The findings also show that East Africa exhibits moderate levels of wind energy siting suitability, with an estimated average of around 37.27% of its land area moderately suitable for wind energy technology installation, covering thousands of square kilometers. The study is advantageous to academia and industry-related personnel engaged in renewable energy-related activities in other African countries with similar topographies.

Suggested Citation

  • Samuel Bimenyimana & Chen Wang & Godwin Norense Osarumwense Asemota & Jeanne Paula Ihirwe & Mucyo Ndera Tuyizere & Fidele Mwizerwa & Yiyi Mo & Martine Abiyese, 2024. "Geospatial Analysis of Wind Energy Siting Suitability in the East African Community," Sustainability, MDPI, vol. 16(4), pages 1-32, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1514-:d:1337148
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/4/1514/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/4/1514/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Jianli & Liu, Dandan & Sha, Ru & Sun, Jingbing & Wang, Yubao & Wu, Yunna, 2024. "Geospatial simulation and decision optimization towards identifying the layout suitability and priority for wind-photovoltaic-hydrogen-ammonia project: An empirical study in China," Energy, Elsevier, vol. 286(C).
    2. Konstantinos, Ioannou & Georgios, Tsantopoulos & Garyfalos, Arabatzis, 2019. "A Decision Support System methodology for selecting wind farm installation locations using AHP and TOPSIS: Case study in Eastern Macedonia and Thrace region, Greece," Energy Policy, Elsevier, vol. 132(C), pages 232-246.
    3. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    4. Md Rabiul Islam & Md Rakibul Islam & Hosen M. Imran, 2022. "Assessing Wind Farm Site Suitability in Bangladesh: A GIS-AHP Approach," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    5. Atici, Kazim Baris & Simsek, Ahmet Bahadir & Ulucan, Aydin & Tosun, Mustafa Umur, 2015. "A GIS-based Multiple Criteria Decision Analysis approach for wind power plant site selection," Utilities Policy, Elsevier, vol. 37(C), pages 86-96.
    6. Schaber, Katrin & Steinke, Florian & Hamacher, Thomas, 2012. "Transmission grid extensions for the integration of variable renewable energies in Europe: Who benefits where?," Energy Policy, Elsevier, vol. 43(C), pages 123-135.
    7. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    8. Lirong Yin & Lei Wang & Jianqiang Li & Siyu Lu & Jiawei Tian & Zhengtong Yin & Shan Liu & Wenfeng Zheng, 2023. "YOLOV4_CSPBi: Enhanced Land Target Detection Model," Land, MDPI, vol. 12(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samuel Bimenyimana & Chen Wang & Godwin Norense Osarumwense Asemota & Jean Marie Vianney Uwizerwa & Jeanne Paula Ihirwe & Mucyo Ndera Tuyizere & Fidele Mwizerwa & Yiyi Mo & Martine Abiyese & Homère Is, 2024. "Wind Energy Siting Optimization in Fujian Province, China," Sustainability, MDPI, vol. 16(24), pages 1-39, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Ifkirne & Houssam El Bouhi & Siham Acharki & Quoc Bao Pham & Abdelouahed Farah & Nguyen Thi Thuy Linh, 2022. "Multi-Criteria GIS-Based Analysis for Mapping Suitable Sites for Onshore Wind Farms in Southeast France," Land, MDPI, vol. 11(10), pages 1-26, October.
    2. Styliani Karamountzou & Dimitra G. Vagiona, 2023. "Suitability and Sustainability Assessment of Existing Onshore Wind Farms in Greece," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    3. Kleanthis Xenitidis & Konstantinos Ioannou & Georgios Tsantopoulos & Dimitrios Myronidis, 2023. "On the Usage of Artificial Neural Networks for the Determination of Optimal Wind Farms Allocation," Sustainability, MDPI, vol. 15(24), pages 1-31, December.
    4. Peri, Erez & Tal, Alon, 2020. "A sustainable way forward for wind power: Assessing turbines’ environmental impacts using a holistic GIS analysis," Applied Energy, Elsevier, vol. 279(C).
    5. Tafarte, Philip & Lehmann, Paul, 2023. "Quantifying trade-offs for the spatial allocation of onshore wind generation capacity – A case study for Germany," Ecological Economics, Elsevier, vol. 209(C).
    6. Artur Amsharuk & Grażyna Łaska, 2024. "Site Selection of Wind Farms in Poland: Combining Theory with Reality," Energies, MDPI, vol. 17(11), pages 1-22, May.
    7. Shao, Meng & Zhao, Yuanxu & Sun, Jinwei & Han, Zhixin & Shao, Zhuxiao, 2023. "A decision framework for tidal current power plant site selection based on GIS-MCDM: A case study in China," Energy, Elsevier, vol. 262(PB).
    8. Dimitris Ioannidis & Dimitra G. Vagiona, 2024. "Optimal Wind Farm Siting Using a Fuzzy Analytic Hierarchy Process: Evaluating the Island of Andros, Greece," Sustainability, MDPI, vol. 16(10), pages 1-25, May.
    9. Yildiz, S.S., 2024. "Spatial multi-criteria decision making approach for wind farm site selection: A case study in Balıkesir, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. Xu, Ye & Li, Ye & Zheng, Lijun & Cui, Liang & Li, Sha & Li, Wei & Cai, Yanpeng, 2020. "Site selection of wind farms using GIS and multi-criteria decision making method in Wafangdian, China," Energy, Elsevier, vol. 207(C).
    11. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    12. Alphan, Hakan, 2024. "Incorporating visibility information into multi-criteria decision making (MCDM) for wind turbine deployment," Applied Energy, Elsevier, vol. 353(PB).
    13. Ji, Ling & Li, Jiahui & Sun, Lijian & Wang, Shuai & Guo, Junhong & Xie, Yulei & Wang, Xander, 2024. "China's onshore wind energy potential in the context of climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    14. Jerome G. Gacu & Junrey D. Garcia & Eddie G. Fetalvero & Merian P. Catajay-Mani & Cris Edward F. Monjardin & Christopher Power, 2024. "A Comprehensive Resource Assessment for Wind Power Generation on the Rural Island of Sibuyan, Philippines," Energies, MDPI, vol. 17(9), pages 1-21, April.
    15. Lehmann, Paul & Ammermann, Kathrin & Gawel, Erik & Geiger, Charlotte & Hauck, Jennifer & Heilmann, Jörg & Meier, Jan-Niklas & Ponitka, Jens & Schicketanz, Sven & Stemmer, Boris & Tafarte, Philip & Thr, 2021. "Managing spatial sustainability trade-offs: The case of wind power," Ecological Economics, Elsevier, vol. 185(C).
    16. Ayan Pierre Abdi & Atilla Damci & Ozgur Kirca & Harun Turkoglu & David Arditi & Sevilay Demirkesen & Mustafa Korkmaz & Adil Enis Arslan, 2024. "A Spatial Decision-Support System for Wind Farm Site Selection in Djibouti," Sustainability, MDPI, vol. 16(22), pages 1-22, November.
    17. Md Rabiul Islam & Md Rakibul Islam & Hosen M. Imran, 2022. "Assessing Wind Farm Site Suitability in Bangladesh: A GIS-AHP Approach," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    18. Elkadeem, Mohamed R. & Younes, Ali & Jurasz, Jakub & AlZahrani, Atif S. & Abido, Mohammad A., 2025. "A spatio-temporal decision-making model for solar, wind, and hybrid systems – A case study of Saudi Arabia," Applied Energy, Elsevier, vol. 383(C).
    19. Samuel Bimenyimana & Chen Wang & Godwin Norense Osarumwense Asemota & Jean Marie Vianney Uwizerwa & Jeanne Paula Ihirwe & Mucyo Ndera Tuyizere & Fidele Mwizerwa & Yiyi Mo & Martine Abiyese & Homère Is, 2024. "Wind Energy Siting Optimization in Fujian Province, China," Sustainability, MDPI, vol. 16(24), pages 1-39, December.
    20. Lehmann, Paul & Ammermann, Kathrin & Gawel, Erik & Geiger, Charlotte & Hauck, Jennifer & Heilmann, Jörg & Meier, Jan-Niklas & Ponitka, Jens & Schicketanz, Sven & Stemmer, Boris & Tafarte, Philip & Thr, 2020. "Managing spatial sustainability trade-offs: The case of wind power," UFZ Discussion Papers 4/2020, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1514-:d:1337148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.