IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10458-d1532369.html
   My bibliography  Save this article

Overview of Sustainable Water Treatment Using Microbial Fuel Cells and Microbial Desalination Cells

Author

Listed:
  • Hamed Farahani

    (Department of Chemical Engineering, University of Qom, Qom 3716146611, Iran)

  • Mostafa Haghighi

    (Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran)

  • Mohammad Mahdi Behvand Usefi

    (Department of Chemical Engineering, University of Kashan, Kashan 8731753153, Iran)

  • Mostafa Ghasemi

    (Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar 311, Oman)

Abstract

Global water scarcity and pollution are among the most severe challenges, affecting the lives of over 2.2 billion people and leading to a projected water demand that will exceed supply by 40% by 2030. Even though reverse osmosis and thermal desalination are commonly adopted water governance solutions, with energy consumption rates reaching up to 10 kWh/cubic meter of water, they remain economically unfeasible for most countries. Therefore, with rapid population growth and industrialization, high operation costs further limit the adoption of the traditional water treatment technologies. However, microbial fuel cells (MFCs) and microbial desalination cells (MDCs) are an innovative solution due to their ability to treat wastewater, desalinate water, and generate bioelectricity simultaneously. The recent advancements in MFCs have enabled the achievement of over 3 W/m 2 of power density, while desalination efficiencies in MDCs have surpassed 63%, reducing total energy consumption by more than 40% when compared to traditional methods. The innovative use of electrode materials, like graphene and carbon nanotubes, has led to a 40% faster electron transfer rate, further increasing the efficiency of energy recovery. Moreover, the innovative integration of artificial intelligence (AI) and machine learning (ML) optimized MFCs and MFC operations, leading to a cost reduction of up to 20% through the real-time monitoring of PMDCs. The main challenges, such as the high capital costs and membrane fouling, were also considered, with the system scalability being the recurring concern. Thus, the current reports suggest that MFCs and MDCs would reduce wastewater treatment costs by 30% if applied on a large scale in the future.

Suggested Citation

  • Hamed Farahani & Mostafa Haghighi & Mohammad Mahdi Behvand Usefi & Mostafa Ghasemi, 2024. "Overview of Sustainable Water Treatment Using Microbial Fuel Cells and Microbial Desalination Cells," Sustainability, MDPI, vol. 16(23), pages 1-27, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10458-:d:1532369
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10458/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10458/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamed Farahani & Mostafa Ghasemi & Mehdi Sedighi & Nitin Raut, 2024. "Employing Artificial Intelligence for Enhanced Microbial Fuel Cell Performance through Wolf Vitamin Solution Optimization," Sustainability, MDPI, vol. 16(15), pages 1-17, July.
    2. Mark A. Shannon & Paul W. Bohn & Menachem Elimelech & John G. Georgiadis & Benito J. Mariñas & Anne M. Mayes, 2008. "Science and technology for water purification in the coming decades," Nature, Nature, vol. 452(7185), pages 301-310, March.
    3. Santoro, Carlo & Abad, Fernando Benito & Serov, Alexey & Kodali, Mounika & Howe, Kerry J. & Soavi, Francesca & Atanassov, Plamen, 2017. "Supercapacitive microbial desalination cells: New class of power generating devices for reduction of salinity content," Applied Energy, Elsevier, vol. 208(C), pages 25-36.
    4. Divya Priya, A. & Deva, Sharon & Shalini, P. & Pydi Setty, Y., 2020. "Antimony-tin based intermetallics supported on reduced graphene oxide as anode and MnO2@rGO as cathode electrode for the study of microbial fuel cell performance," Renewable Energy, Elsevier, vol. 150(C), pages 156-166.
    5. Tashtoush, Bourhan & Alyahya, Wa'ed & Al Ghadi, Malak & Al-Omari, Jamal & Morosuk, Tatiana, 2023. "Renewable energy integration in water desalination: State-of-the-art review and comparative analysis," Applied Energy, Elsevier, vol. 352(C).
    6. Tawalbeh, Muhammad & Al-Othman, Amani & Singh, Karnail & Douba, Ikram & Kabakebji, Dania & Alkasrawi, Malek, 2020. "Microbial desalination cells for water purification and power generation: A critical review," Energy, Elsevier, vol. 209(C).
    7. Sami G. A. Flimban & Iqbal M. I. Ismail & Taeyoung Kim & Sang-Eun Oh, 2019. "Overview of Recent Advancements in the Microbial Fuel Cell from Fundamentals to Applications: Design, Major Elements, and Scalability," Energies, MDPI, vol. 12(17), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Zheng & Zhang, Chengbin & Chen, Yongping, 2025. "Spray-enhanced flash desalination using ocean thermal energy," Energy, Elsevier, vol. 322(C).
    2. Mashhadikhan, Samaneh & Ahmadi, Reyhane & Ebadi Amooghin, Abtin & Sanaeepur, Hamidreza & Aminabhavi, Tejraj M. & Rezakazemi, Mashallah, 2024. "Breaking temperature barrier: Highly thermally heat resistant polymeric membranes for sustainable water and wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
    4. Portilla-Paveri, Manuel & Cariaga, Denise & Negrete-Pincetic, Matías & Lorca, Álvaro & Anjos, Miguel F., 2024. "A long-term generation and transmission expansion planning model considering desalination flexibility and coordination: A Chilean case study," Applied Energy, Elsevier, vol. 371(C).
    5. Guo, Qijing & Yi, Hao & Jia, Feifei & Song, Shaoxian, 2022. "Vertical porous MoS2/hectorite double-layered aerogel as superior salt resistant and highly efficient solar steam generators," Renewable Energy, Elsevier, vol. 194(C), pages 68-79.
    6. Milan Daus & Katharina Koberger & Kaan Koca & Felix Beckers & Jorge Encinas Fernández & Barbara Weisbrod & Daniel Dietrich & Sabine Ulrike Gerbersdorf & Rüdiger Glaser & Stefan Haun & Hilmar Hofmann &, 2021. "Interdisciplinary Reservoir Management—A Tool for Sustainable Water Resources Management," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    7. Wilberforce, Tabbi & Abdelkareem, Mohammad Ali & Elsaid, Khaled & Olabi, A.G. & Sayed, Enas Taha, 2022. "Role of carbon-based nanomaterials in improving the performance of microbial fuel cells," Energy, Elsevier, vol. 240(C).
    8. Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Alawadhi, Hussain & Elsaid, Khaled & Wilberforce, Tabbi & Olabi, A.G., 2021. "Graphitic carbon nitride/carbon brush composite as a novel anode for yeast-based microbial fuel cells," Energy, Elsevier, vol. 221(C).
    9. Asiah Sukri & Raihan Othman & Firdaus Abd-Wahab & Noraini M. Noor, 2021. "Self-Sustaining Bioelectrochemical Cell from Fungal Degradation of Lignin-Rich Agrowaste," Energies, MDPI, vol. 14(8), pages 1-11, April.
    10. Janeth Marwa & Mesia Lufingo & Chicgoua Noubactep & Revocatus Machunda, 2018. "Defeating Fluorosis in the East African Rift Valley: Transforming the Kilimanjaro into a Rainwater Harvesting Park," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    11. Lu Liu & Yuanxin Yao & Xuebing Zhou & Yanan Zhang & Deqing Liang, 2021. "Improved Formation Kinetics of Carbon Dioxide Hydrate in Brine Induced by Sodium Dodecyl Sulfate," Energies, MDPI, vol. 14(8), pages 1-12, April.
    12. Dar, Rouf Ahmad & Tsui, To-Hung & Zhang, Le & Smoliński, Adam & Tong, Yen Wah & Mohamed Rasmey, Abdel-Hamied & Liu, Ronghou, 2025. "Recent achievements in magnetic-field-assisted anaerobic digestion for bioenergy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    13. Hugo Guillermo Jimenez Pacheco & Abdel Alejandro Portocarrero Banda & Eric Ivan Vilca Cayllahua & Lilia Mary Miranda Ramos & Victor Ludgardo Alvarez Tohalino & Herbert Jesús Del Carpio Beltran & Pavel, 2023. "New Electrogenic Microorganism Citrobacter sp. Isolated from Microbial Fuel Cell and Bacterial Characteristics Determination," Energies, MDPI, vol. 16(7), pages 1-13, March.
    14. Haneen Abdelrazeq & Majeda Khraisheh & Hafsa Mohammed Ashraf & Parisa Ebrahimi & Ansaruddin Kunju, 2021. "Sustainable Innovation in Membrane Technologies for Produced Water Treatment: Challenges and Limitations," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    15. Azize Ayol & Luciana Peixoto & Tugba Keskin & Haris Nalakath Abubackar, 2021. "Reactor Designs and Configurations for Biological and Bioelectrochemical C1 Gas Conversion: A Review," IJERPH, MDPI, vol. 18(21), pages 1-36, November.
    16. Alkasrawi, Malek & Al-Othman, Amani & Tawalbeh, Muhammad & Doncan, Shona & Gurram, Raghu & Singsaas, Eric & Almomani, Fares & Al-Asheh, Sameer, 2021. "A novel technique of paper mill sludge conversion to bioethanol toward sustainable energy production: Effect of fiber recovery on the saccharification hydrolysis and fermentation," Energy, Elsevier, vol. 223(C).
    17. Suárez, Francisco & Ruskowitz, Jeffrey A. & Tyler, Scott W. & Childress, Amy E., 2015. "Renewable water: Direct contact membrane distillation coupled with solar ponds," Applied Energy, Elsevier, vol. 158(C), pages 532-539.
    18. Xie, Guo & Sun, Licheng & Yan, Tiantong & Tang, Jiguo & Bao, Jingjing & Du, Min, 2018. "Model development and experimental verification for tubular solar still operating under vacuum condition," Energy, Elsevier, vol. 157(C), pages 115-130.
    19. Miriam Cerrillo & Laura Burgos & August Bonmatí, 2021. "Biogas Upgrading and Ammonia Recovery from Livestock Manure Digestates in a Combined Electromethanogenic Biocathode—Hydrophobic Membrane System," Energies, MDPI, vol. 14(2), pages 1-12, January.
    20. Maleki, Akbar & Khajeh, Morteza Gholipour & Rosen, Marc A., 2016. "Weather forecasting for optimization of a hybrid solar-wind–powered reverse osmosis water desalination system using a novel optimizer approach," Energy, Elsevier, vol. 114(C), pages 1120-1134.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10458-:d:1532369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.