IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3390-d263505.html
   My bibliography  Save this article

Overview of Recent Advancements in the Microbial Fuel Cell from Fundamentals to Applications: Design, Major Elements, and Scalability

Author

Listed:
  • Sami G. A. Flimban

    (Department of Biological Environment, Kangwon National University, Gangwon-do, Chuncheon 24341, Korea
    Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Iqbal M. I. Ismail

    (Center of Excellence in Environmental Studies, Department of Chemistry, College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Taeyoung Kim

    (Green Energy Institute, 177 Samhyangcheon-ro, Mokpo, Jeollanam-do 58656, Korea)

  • Sang-Eun Oh

    (Department of Biological Environment, Kangwon National University, Gangwon-do, Chuncheon 24341, Korea)

Abstract

Microbial fuel cell (MFC) technology offers an alternative means for producing energy from waste products. In this review, several characteristics of MFC technology that make it revolutionary will be highlighted. First, a brief history presents how bioelectrochemical systems have advanced, ultimately describing the development of microbial fuel cells. Second, the focus is shifted to the attributes that enable MFCs to work efficiently. Next, follows the design of various MFC systems in use including their components and how they are assembled, along with an explanation of how they work. Finally, microbial fuel cell designs and types of main configurations used are presented along with the scalability of the technology for proper application. The present review shows importance of design and elements to reduce energy loss for scaling up the MFC system including the type of electrode, shape of the single reactor, electrical connection method, stack direction, and modulation. These aspects precede making economically applicable large-scale MFCs (over 1 m 3 scale) a reality.

Suggested Citation

  • Sami G. A. Flimban & Iqbal M. I. Ismail & Taeyoung Kim & Sang-Eun Oh, 2019. "Overview of Recent Advancements in the Microbial Fuel Cell from Fundamentals to Applications: Design, Major Elements, and Scalability," Energies, MDPI, vol. 12(17), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3390-:d:263505
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3390/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3390/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walter, Xavier Alexis & Stinchcombe, Andrew & Greenman, John & Ieropoulos, Ioannis, 2017. "Urine transduction to usable energy: A modular MFC approach for smartphone and remote system charging," Applied Energy, Elsevier, vol. 192(C), pages 575-581.
    2. Mateo, S. & Cantone, A. & Cañizares, P. & Fernández-Morales, F.J. & Scialdone, O. & Rodrigo, M.A., 2018. "On the staking of miniaturized air-breathing microbial fuel cells," Applied Energy, Elsevier, vol. 232(C), pages 1-8.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barbara Włodarczyk & Paweł P. Włodarczyk, 2020. "The Membrane-Less Microbial Fuel Cell (ML-MFC) with Ni-Co and Cu-B Cathode Powered by the Process Wastewater from Yeast Production," Energies, MDPI, vol. 13(15), pages 1-13, August.
    2. Fan Zhao & Yini Chen & Shiyang Zhang & Meng Li & Xinhua Tang, 2023. "Three-Dimensional Carbon Monolith Coated by Nano-TiO 2 for Anode Enhancement in Microbial Fuel Cells," IJERPH, MDPI, vol. 20(4), pages 1-14, February.
    3. Qusay Hassan & Itimad D. J. Azzawi & Aws Zuhair Sameen & Hayder M. Salman, 2023. "Hydrogen Fuel Cell Vehicles: Opportunities and Challenges," Sustainability, MDPI, vol. 15(15), pages 1-26, July.
    4. Maria G. Savvidou & Pavlos K. Pandis & Diomi Mamma & Georgia Sourkouni & Christos Argirusis, 2022. "Organic Waste Substrates for Bioenergy Production via Microbial Fuel Cells: A Key Point Review," Energies, MDPI, vol. 15(15), pages 1-53, August.
    5. Opoku, Prince Atta & Jingyu, Huang & Yi, Li & Ewusi-Mensah, David & Miwornunyuie, Nicholas, 2023. "Scalability of the multi-anode plug flow microbial fuel cell as a sustainable prospect for large-scale design," Renewable Energy, Elsevier, vol. 207(C), pages 693-702.
    6. Miriam Cerrillo & Laura Burgos & August Bonmatí, 2021. "Biogas Upgrading and Ammonia Recovery from Livestock Manure Digestates in a Combined Electromethanogenic Biocathode—Hydrophobic Membrane System," Energies, MDPI, vol. 14(2), pages 1-12, January.
    7. Ahmed, Shams Forruque & Mofijur, M. & Islam, Nafisa & Parisa, Tahlil Ahmed & Rafa, Nazifa & Bokhari, Awais & Klemeš, Jiří Jaromír & Indra Mahlia, Teuku Meurah, 2022. "Insights into the development of microbial fuel cells for generating biohydrogen, bioelectricity, and treating wastewater," Energy, Elsevier, vol. 254(PA).
    8. Hugo Guillermo Jimenez Pacheco & Abdel Alejandro Portocarrero Banda & Eric Ivan Vilca Cayllahua & Lilia Mary Miranda Ramos & Victor Ludgardo Alvarez Tohalino & Herbert Jesús Del Carpio Beltran & Pavel, 2023. "New Electrogenic Microorganism Citrobacter sp. Isolated from Microbial Fuel Cell and Bacterial Characteristics Determination," Energies, MDPI, vol. 16(7), pages 1-13, March.
    9. Azize Ayol & Luciana Peixoto & Tugba Keskin & Haris Nalakath Abubackar, 2021. "Reactor Designs and Configurations for Biological and Bioelectrochemical C1 Gas Conversion: A Review," IJERPH, MDPI, vol. 18(21), pages 1-36, November.
    10. Dziegielowski, Jakub & Metcalfe, Benjamin & Villegas-Guzman, Paola & Martínez-Huitle, Carlos A. & Gorayeb, Adryane & Wenk, Jannis & Di Lorenzo, Mirella, 2020. "Development of a functional stack of soil microbial fuel cells to power a water treatment reactor: From the lab to field trials in North East Brazil," Applied Energy, Elsevier, vol. 278(C).
    11. Asiah Sukri & Raihan Othman & Firdaus Abd-Wahab & Noraini M. Noor, 2021. "Self-Sustaining Bioelectrochemical Cell from Fungal Degradation of Lignin-Rich Agrowaste," Energies, MDPI, vol. 14(8), pages 1-11, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Ramón-Fernández, Alberto & Salar-García, M.J. & Ruiz-Fernández, Daniel & Greenman, J. & Ieropoulos, I., 2019. "Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Tang, Raymond Chong Ong & Jang, Jer-Huan & Lan, Tzu-Hsuan & Wu, Jung-Chen & Yan, Wei-Mon & Sangeetha, Thangavel & Wang, Chin-Tsan & Ong, Hwai Chyuan & Ong, Zhi Chao, 2020. "Review on design factors of microbial fuel cells using Buckingham's Pi Theorem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    3. Wang, Chin-Tsan & Lee, Yao-Cheng & Ou, Yun-Ting & Yang, Yung-Chin & Chong, Wen-Tong & Sangeetha, Thangavel & Yan, Wei-Mon, 2017. "Exposing effect of comb-type cathode electrode on the performance of sediment microbial fuel cells," Applied Energy, Elsevier, vol. 204(C), pages 620-625.
    4. Lu, Zhihao & Yin, Di & Chen, Peng & Wang, Hongzhen & Yang, Yuhang & Huang, Guangtuan & Cai, Lankun & Zhang, Lehua, 2020. "Power-generating trees: Direct bioelectricity production from plants with microbial fuel cells," Applied Energy, Elsevier, vol. 268(C).
    5. Fan, Yingzheng & Qian, Fengyu & Huang, Yuankai & Sifat, Iram & Zhang, Chengwu & Depasquale, Alex & Wang, Lei & Li, Baikun, 2021. "Miniature microbial fuel cells integrated with triggered power management systems to power wastewater sensors in an uninterrupted mode," Applied Energy, Elsevier, vol. 302(C).
    6. Mateo, S. & Cantone, A. & Cañizares, P. & Fernández-Morales, F.J. & Scialdone, O. & Rodrigo, M.A., 2018. "On the staking of miniaturized air-breathing microbial fuel cells," Applied Energy, Elsevier, vol. 232(C), pages 1-8.
    7. de Ramón-Fernández, A. & Salar-García, M.J. & Ruiz Fernández, D. & Greenman, J. & Ieropoulos, I.A., 2020. "Evaluation of artificial neural network algorithms for predicting the effect of the urine flow rate on the power performance of microbial fuel cells," Energy, Elsevier, vol. 213(C).
    8. Fischer, Fabian & Sugnaux, Marc & Savy, Cyrille & Hugenin, Gérald, 2018. "Microbial fuel cell stack power to lithium battery stack: Pilot concept for scale up," Applied Energy, Elsevier, vol. 230(C), pages 1633-1644.
    9. Roustazadeh Sheikhyousefi, P. & Nasr Esfahany, M. & Colombo, A. & Franzetti, A. & Trasatti, S.P. & Cristiani, P., 2017. "Investigation of different configurations of microbial fuel cells for the treatment of oilfield produced water," Applied Energy, Elsevier, vol. 192(C), pages 457-465.
    10. Jiang, Minhua & Xu, Tao & Chen, Shuiliang, 2020. "A mechanical rechargeable small-size microbial fuel cell with long-term and stable power output," Applied Energy, Elsevier, vol. 260(C).
    11. Mateo, Sara & Cañizares, Pablo & Rodrigo, Manuel Andrés & Fernandez-Morales, Francisco Jesus, 2018. "Driving force of the better performance of metal-doped carbonaceous anodes in microbial fuel cells," Applied Energy, Elsevier, vol. 225(C), pages 52-59.
    12. Xu, Zhiheng & Liu, Yucheng & Williams, Isaiah & Li, Yan & Qian, Fengyu & Wang, Lei & Lei, Yu & Li, Baikun, 2017. "Flat enzyme-based lactate biofuel cell integrated with power management system: Towards long term in situ power supply for wearable sensors," Applied Energy, Elsevier, vol. 194(C), pages 71-80.
    13. Salar-Garcia, M.J. & Montilla, F. & Quijada, C. & Morallon, E. & Ieropoulos, I., 2020. "Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes," Applied Energy, Elsevier, vol. 278(C).
    14. Walter, Xavier Alexis & You, Jiseon & Winfield, Jonathan & Bajarunas, Ugnius & Greenman, John & Ieropoulos, Ioannis A., 2020. "From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights," Applied Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3390-:d:263505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.