IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v221y2021ics0360544221000980.html
   My bibliography  Save this article

Graphitic carbon nitride/carbon brush composite as a novel anode for yeast-based microbial fuel cells

Author

Listed:
  • Sayed, Enas Taha
  • Abdelkareem, Mohammad Ali
  • Alawadhi, Hussain
  • Elsaid, Khaled
  • Wilberforce, Tabbi
  • Olabi, A.G.

Abstract

A biocompatible graphitic carbon nitride (g-C3N4) was prepared on the surface of carbon brush fiber (CB) via a facile one-step preparation method. The prepared g-C3N4 formed a composite with the carbon brush’s fibers (g-C3N4@CB), as shown from the XRD analysis. The g-C3N4@CB was used as an anode in a yeast-based microbial fuel cell (MFC), and demonstrated an outstanding performance compared to plain CB. An anode potential of −0.27 V “vs. Ag/AgCl” and an open-circuit voltage of 0.77 V was obtained in the case of the composite electrode, compared to −0.1 V vs. Ag/AgCl and 0.62 V, respectively, in the case of the CB. The cell using the composite electrode demonstrated a maximum power of 772 mWm−2, which is twelve times that obtained using the CB. The outstanding performance of the composite electrode can be credited to the biocompatibility of the composite anode and its roughness, which improved the yeast biofilm formation and decreased the ohmic resistance. This is the first report involving the application of g-C3N4 in a yeast-based MFC, and it demonstrated promising results which can be used for other types of MFCs.

Suggested Citation

  • Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Alawadhi, Hussain & Elsaid, Khaled & Wilberforce, Tabbi & Olabi, A.G., 2021. "Graphitic carbon nitride/carbon brush composite as a novel anode for yeast-based microbial fuel cells," Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544221000980
    DOI: 10.1016/j.energy.2021.119849
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221000980
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.119849?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dalla Longa, Francesco & Nogueira, Larissa P. & Limberger, Jon & Wees, Jan-Diederik van & van der Zwaan, Bob, 2020. "Scenarios for geothermal energy deployment in Europe," Energy, Elsevier, vol. 206(C).
    2. Zhou, Aijuan & Liu, Zhihong & Wang, Sufang & Chen, E. & Wei, Yaoli & Liu, Wenzong & Wang, Aijie & Yue, Xiuping, 2019. "Bio-electrolysis contribute to simultaneous bio-hydrogen recovery and phosphorus release from waste activated sludge assisted with prefermentation," Energy, Elsevier, vol. 185(C), pages 787-794.
    3. Olabi, A.G. & Abdelkareem, Mohammad Ali & Wilberforce, Tabbi & Sayed, Enas Taha, 2021. "Application of graphene in energy storage device – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Siddique, Muhammad Bilal & Thakur, Jagruti, 2020. "Assessment of curtailed wind energy potential for off-grid applications through mobile battery storage," Energy, Elsevier, vol. 201(C).
    5. Sangeetha, Thangavel & Li, I-Ting & Lan, Tzu-Hsuan & Wang, Chin-Tsan & Yan, Wei-Mon, 2021. "A fluid dynamics perspective on the flow dependent performance of honey comb microbial fuel cells," Energy, Elsevier, vol. 214(C).
    6. Christwardana, Marcelinus & Frattini, Domenico & Accardo, Grazia & Yoon, Sung Pil & Kwon, Yongchai, 2018. "Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst," Applied Energy, Elsevier, vol. 222(C), pages 369-382.
    7. Olabi, A.G. & Elsaid, Khaled & Rabaia, Malek Kamal Hussien & Askalany, Ahmed A. & Abdelkareem, Mohammad Ali, 2020. "Waste heat-driven desalination systems: Perspective," Energy, Elsevier, vol. 209(C).
    8. Hidalgo, Diana & Tommasi, Tonia & Bocchini, Sergio & Chiolerio, Alessandro & Chiodoni, Angelica & Mazzarino, Italo & Ruggeri, Bernardo, 2016. "Surface modification of commercial carbon felt used as anode for Microbial Fuel Cells," Energy, Elsevier, vol. 99(C), pages 193-201.
    9. He, Li & Du, Peng & Chen, Yizhong & Lu, Hongwei & Cheng, Xi & Chang, Bei & Wang, Zheng, 2017. "Advances in microbial fuel cells for wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 388-403.
    10. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    11. Liu, Liuchen & Wu, Jinlu & Zhong, Fen & Gao, Naiping & Cui, Guomin, 2021. "Development of a novel cogeneration system by combing organic rankine cycle and heat pump cycle for waste heat recovery," Energy, Elsevier, vol. 217(C).
    12. Hanif, Imran & Faraz Raza, Syed Muhammad & Gago-de-Santos, Pilar & Abbas, Qaiser, 2019. "Fossil fuels, foreign direct investment, and economic growth have triggered CO2 emissions in emerging Asian economies: Some empirical evidence," Energy, Elsevier, vol. 171(C), pages 493-501.
    13. Xin, Shuaishuai & Shen, Jianguo & Liu, Guocheng & Chen, Qinghua & Xiao, Zhou & Zhang, Guodong & Xin, Yanjun, 2020. "High electricity generation and COD removal from cattle wastewater in microbial fuel cells with 3D air cathode employed non-precious Cu2O/reduced graphene oxide as cathode catalyst," Energy, Elsevier, vol. 196(C).
    14. ElMekawy, Ahmed & Hegab, Hanaa M. & Losic, Dusan & Saint, Christopher P. & Pant, Deepak, 2017. "Applications of graphene in microbial fuel cells: The gap between promise and reality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1389-1403.
    15. Li, Tao & Li, Ang & Guo, Xiaopeng, 2020. "The sustainable development-oriented development and utilization of renewable energy industry——A comprehensive analysis of MCDM methods," Energy, Elsevier, vol. 212(C).
    16. Abdelkareem, Mohammad Ali & Tanveer, Waqas Hassan & Sayed, Enas Taha & Assad, M. El Haj & Allagui, Anis & Cha, S.W., 2019. "On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 361-375.
    17. Rodriguez, Cristina & Alaswad, Abed & El-Hassan, Zaki & Olabi, Abdul G., 2018. "Waste paper and macroalgae co-digestion effect on methane production," Energy, Elsevier, vol. 154(C), pages 119-125.
    18. Temiz, Mert & Dincer, Ibrahim, 2021. "Concentrated solar driven thermochemical hydrogen production plant with thermal energy storage and geothermal systems," Energy, Elsevier, vol. 219(C).
    19. Abdelkareem, Mohammad Ali & Allagui, Anis & Sayed, Enas Taha & El Haj Assad, M. & Said, Zafar & Elsaid, Khaled, 2019. "Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells," Renewable Energy, Elsevier, vol. 131(C), pages 563-584.
    20. Duarte, Kimberley D.Z. & Frattini, Domenico & Kwon, Yongchai, 2019. "High performance yeast-based microbial fuel cells by surfactant-mediated gold nanoparticles grown atop a carbon felt anode," Applied Energy, Elsevier, vol. 256(C).
    21. Liu, Rongtang & Liu, Ming & Zhao, Yongliang & Ma, Yuegeng & Yan, Junjie, 2021. "Thermodynamic study of a novel lignite poly-generation system driven by solar energy," Energy, Elsevier, vol. 214(C).
    22. Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019. "Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 239-248.
    23. Tawalbeh, Muhammad & Al-Othman, Amani & Singh, Karnail & Douba, Ikram & Kabakebji, Dania & Alkasrawi, Malek, 2020. "Microbial desalination cells for water purification and power generation: A critical review," Energy, Elsevier, vol. 209(C).
    24. Laib, I. & Hamidat, A. & Haddadi, M. & Ramzan, N. & Olabi, A.G., 2018. "Study and simulation of the energy performances of a grid-connected PV system supplying a residential house in north of Algeria," Energy, Elsevier, vol. 152(C), pages 445-454.
    25. Wang, Zhaohua & Bui, Quocviet & Zhang, Bin, 2020. "The relationship between biomass energy consumption and human development: Empirical evidence from BRICS countries," Energy, Elsevier, vol. 194(C).
    26. Sun, Ze & Zhang, Haicheng & Liu, Xiaolong & Ding, Jun & Xu, Daolin & Cai, Zhiwen, 2021. "Wave energy assessment of the Xisha Group Islands zone for the period 2010–2019," Energy, Elsevier, vol. 220(C).
    27. Rezk, Hegazy & Sayed, Enas Taha & Al-Dhaifallah, Mujahed & Obaid, M. & El-Sayed, Abou Hashema M. & Abdelkareem, Mohammad Ali & Olabi, A.G., 2019. "Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system," Energy, Elsevier, vol. 175(C), pages 423-433.
    28. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Stachowicz, Paweł, 2020. "Energy consumption and heating costs for a detached house over a 12-year period – Renewable fuels versus fossil fuels," Energy, Elsevier, vol. 204(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hegazy Rezk & A. G. Olabi & Mohammad Ali Abdelkareem & Hussein M. Maghrabie & Enas Taha Sayed, 2023. "Fuzzy Modelling and Optimization of Yeast-MFC for Simultaneous Wastewater Treatment and Electrical Energy Production," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
    2. Farahmand Habibi, Maryam & Arvand, Majid & Sohrabnezhad, Shabnam, 2021. "Boosting bioelectricity generation in microbial fuel cells using metal@metal oxides/nitrogen-doped carbon quantum dots," Energy, Elsevier, vol. 223(C).
    3. Ouyang, Tiancheng & Lu, Jie & Zhao, Zhongkai & Chen, Jingxian & Xu, Peihang, 2021. "New insight on the mechanism of vibration effects in vapor-feed microfluidic fuel cell," Energy, Elsevier, vol. 225(C).
    4. Wilberforce, Tabbi & Abdelkareem, Mohammad Ali & Elsaid, Khaled & Olabi, A.G. & Sayed, Enas Taha, 2022. "Role of carbon-based nanomaterials in improving the performance of microbial fuel cells," Energy, Elsevier, vol. 240(C).
    5. Alaa A. Zaky & Rania M. Ghoniem & F. Selim, 2023. "Precise Modeling of Proton Exchange Membrane Fuel Cell Using the Modified Bald Eagle Optimization Algorithm," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    6. Abdul Ghani Olabi & Tabbi Wilberforce & Abdulrahman Alanazi & Parag Vichare & Enas Taha Sayed & Hussein M. Maghrabie & Khaled Elsaid & Mohammad Ali Abdelkareem, 2022. "Novel Trends in Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 15(14), pages 1-35, July.
    7. Rezk, Hegazy & Ferahtia, Seydali & Djeroui, Ali & Chouder, Aissa & Houari, Azeddine & Machmoum, Mohamed & Abdelkareem, Mohammad Ali, 2022. "Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer," Energy, Elsevier, vol. 239(PC).
    8. Chouhan, Raghuraj Singh & Gandhi, Sonu & Verma, Suresh K. & Jerman, Ivan & Baker, Syed & Štrok, Marko, 2023. "Recent advancements in the development of Two-Dimensional nanostructured based anode materials for stable power density in microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelkareem, Mohammad Ali & Sayed, Enas Taha & Nakagawa, Nobuyoshi, 2020. "Significance of diffusion layers on the performance of liquid and vapor feed passive direct methanol fuel cells," Energy, Elsevier, vol. 209(C).
    2. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    3. A. G. Olabi & Tabbi Wilberforce & Khaled Elsaid & Tareq Salameh & Enas Taha Sayed & Khaled Saleh Husain & Mohammad Ali Abdelkareem, 2021. "Selection Guidelines for Wind Energy Technologies," Energies, MDPI, vol. 14(11), pages 1-34, June.
    4. Enas Taha Sayed & Hussain Alawadhi & Khaled Elsaid & A. G. Olabi & Maryam Adel Almakrani & Shaikha Tamim Bin Tamim & Ghada H. M. Alafranji & Mohammad Ali Abdelkareem, 2020. "A Carbon-Cloth Anode Electroplated with Iron Nanostructure for Microbial Fuel Cell Operated with Real Wastewater," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    5. Olabi, A.G. & Abdelkareem, Mohammad Ali & Wilberforce, Tabbi & Sayed, Enas Taha, 2021. "Application of graphene in energy storage device – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    7. Alkasrawi, Malek & Al-Othman, Amani & Tawalbeh, Muhammad & Doncan, Shona & Gurram, Raghu & Singsaas, Eric & Almomani, Fares & Al-Asheh, Sameer, 2021. "A novel technique of paper mill sludge conversion to bioethanol toward sustainable energy production: Effect of fiber recovery on the saccharification hydrolysis and fermentation," Energy, Elsevier, vol. 223(C).
    8. Frattini, Domenico & Accardo, Grazia & Duarte, Kimberley D.Z. & Kim, Do-Heyoung & Kwon, Yongchai, 2020. "Improved biofilm adhesion and electrochemical properties of a graphite-cement composite with silica nanoflowers versus two benchmark carbon felts," Applied Energy, Elsevier, vol. 261(C).
    9. A.G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Khaled Elsaid & Mohammad Ali Abdelkareem, 2020. "Prospects of Fuel Cell Combined Heat and Power Systems," Energies, MDPI, vol. 13(16), pages 1-20, August.
    10. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    11. Duarte, Kimberley D.Z. & Frattini, Domenico & Kwon, Yongchai, 2019. "High performance yeast-based microbial fuel cells by surfactant-mediated gold nanoparticles grown atop a carbon felt anode," Applied Energy, Elsevier, vol. 256(C).
    12. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Bahaa, Ahmed & Eisa, Tasnim & Alawadhi, Hussain & Al-Asheh, Sameer & Chae, Kyu-Jung & Olabi, A.G., 2021. "Synthesis and performance evaluation of various metal chalcogenides as active anodes for direct urea fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Temiz, Mert & Dincer, Ibrahim, 2022. "A unique ocean and solar based multigenerational system with hydrogen production and thermal energy storage for Arctic communities," Energy, Elsevier, vol. 239(PB).
    15. Nassef, Ahmed M. & Olabi, A.G. & Rodriguez, Cristina & Abdelkareem, Mohammad Ali & Rezk, Hegazy, 2021. "Optimal operating parameter determination and modeling to enhance methane production from macroalgae," Renewable Energy, Elsevier, vol. 163(C), pages 2190-2197.
    16. Fathy, Ahmed & Ferahtia, Seydali & Rezk, Hegazy & Yousri, Dalia & Abdelkareem, Mohammad Ali & Olabi, A.G., 2022. "Optimal adaptive fuzzy management strategy for fuel cell-based DC microgrid," Energy, Elsevier, vol. 247(C).
    17. Chouhan, Raghuraj Singh & Gandhi, Sonu & Verma, Suresh K. & Jerman, Ivan & Baker, Syed & Štrok, Marko, 2023. "Recent advancements in the development of Two-Dimensional nanostructured based anode materials for stable power density in microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Choudhury, Payel & Uday, Uma Shankar Prasad & Mahata, Nibedita & Nath Tiwari, Onkar & Narayan Ray, Rup & Kanti Bandyopadhyay, Tarun & Bhunia, Biswanath, 2017. "Performance improvement of microbial fuel cells for waste water treatment along with value addition: A review on past achievements and recent perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 372-389.
    19. Nassef, Ahmed M. & Fathy, Ahmed & Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Rezk, Hegazy & Tanveer, Waqas Hassan & Olabi, A.G., 2019. "Maximizing SOFC performance through optimal parameters identification by modern optimization algorithms," Renewable Energy, Elsevier, vol. 138(C), pages 458-464.
    20. Zhu, Zhu & Lu, Hao & Zhao, Wenjun & tuerxunjiang, Ailidaer & Chang, Xiqiang, 2023. "Materials, performances and applications of electric heating films," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544221000980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.