IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p1878-d1040391.html
   My bibliography  Save this article

Fuzzy Modelling and Optimization of Yeast-MFC for Simultaneous Wastewater Treatment and Electrical Energy Production

Author

Listed:
  • Hegazy Rezk

    (Department of Electrical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam bin Abdulaziz University, Wadi Alddawasir 11991, Saudi Arabia)

  • A. G. Olabi

    (Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
    Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET, UK)

  • Mohammad Ali Abdelkareem

    (Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
    Chemical Engineering Department, Faculty of Engineering, Minia University, Minya 61517, Egypt)

  • Hussein M. Maghrabie

    (Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83521, Egypt)

  • Enas Taha Sayed

    (Chemical Engineering Department, Faculty of Engineering, Minia University, Minya 61517, Egypt)

Abstract

Microbial fuel cells convert the chemical energy conserved in organic matter in wastewater directly to electrical energy through living microorganisms. These devices are environmentally friendly thanks to their ability to simultaneously produce electrical energy and wastewater treatment. The output power of the yeast microbial fuel cell (YMFC) depends mainly on glucose concentration and glucose/yeast ratio. Thus, the paper aims to boost the power of YMFC by identifying the best values of glucose concentration and glucose/yeast ratio. The suggested approach comprises fuzzy modelling and optimization. Fuzzy is used to build the model based on the measured data. In the optimization stage, the marine predators’ algorithm (MPA) is applied to identify the best glucose concentration values and glucose/yeast ratio corresponding to the maximum output power of YMFC. The results revealed the superiority of the combination of fuzzy and MPA compared with the response surface methodology (RSM) approach. Regarding the modelling accuracy, the coefficient of determination increased by 13.32% and 8.37%, respectively, for without methylene blue and with methylene blue compared with RSM. The integration between fuzzy and MPA succeeded in maximizing the output power from YMFC. Without MB, the power density increased by 25% and 29.3%, respectively, compared with measured data and RSM. In addition, with MB, the power density increased by 22.4% and 26%, compared with measured data and RSM.

Suggested Citation

  • Hegazy Rezk & A. G. Olabi & Mohammad Ali Abdelkareem & Hussein M. Maghrabie & Enas Taha Sayed, 2023. "Fuzzy Modelling and Optimization of Yeast-MFC for Simultaneous Wastewater Treatment and Electrical Energy Production," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:1878-:d:1040391
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/1878/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/1878/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdullahi Abubakar Mas’ud & Jorge Alfredo Ardila-Rey & Ricardo Albarracín & Firdaus Muhammad-Sukki & Nurul Aini Bani, 2017. "Comparison of the Performance of Artificial Neural Networks and Fuzzy Logic for Recognizing Different Partial Discharge Sources," Energies, MDPI, vol. 10(7), pages 1-20, July.
    2. Kyriakou, Maria & Patsalou, Maria & Xiaris, Nikolas & Tsevis, Athanasios & Koutsokeras, Loukas & Constantinides, Georgios & Koutinas, Michalis, 2020. "Enhancing bioproduction and thermotolerance in Saccharomyces cerevisiae via cell immobilization on biochar: Application in a citrus peel waste biorefinery," Renewable Energy, Elsevier, vol. 155(C), pages 53-64.
    3. Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Alawadhi, Hussain & Elsaid, Khaled & Wilberforce, Tabbi & Olabi, A.G., 2021. "Graphitic carbon nitride/carbon brush composite as a novel anode for yeast-based microbial fuel cells," Energy, Elsevier, vol. 221(C).
    4. Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Bahaa, Ahmed & Eisa, Tasnim & Alawadhi, Hussain & Al-Asheh, Sameer & Chae, Kyu-Jung & Olabi, A.G., 2021. "Synthesis and performance evaluation of various metal chalcogenides as active anodes for direct urea fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Sudhakar, M.P. & Arunkumar, K. & Perumal, K., 2020. "Pretreatment and process optimization of spent seaweed biomass (SSB) for bioethanol production using yeast (Saccharomyces cerevisiae)," Renewable Energy, Elsevier, vol. 153(C), pages 456-471.
    6. Enas Taha Sayed & Hussain Alawadhi & Khaled Elsaid & A. G. Olabi & Maryam Adel Almakrani & Shaikha Tamim Bin Tamim & Ghada H. M. Alafranji & Mohammad Ali Abdelkareem, 2020. "A Carbon-Cloth Anode Electroplated with Iron Nanostructure for Microbial Fuel Cell Operated with Real Wastewater," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    7. Birjandi, Noushin & Younesi, Habibollah & Ghoreyshi, Ali Asghar & Rahimnejad, Mostafa, 2020. "Enhanced medicinal herbs wastewater treatment in continuous flow bio-electro-Fenton operations along with power generation," Renewable Energy, Elsevier, vol. 155(C), pages 1079-1090.
    8. Hou, Junbo & Yang, Min & Zhang, Junliang, 2020. "Active and passive fuel recirculation for solid oxide and proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 155(C), pages 1355-1371.
    9. Rahman, Mohammad Mafizur & Sultana, Nahid & Velayutham, Eswaran, 2022. "Renewable energy, energy intensity and carbon reduction: Experience of large emerging economies," Renewable Energy, Elsevier, vol. 184(C), pages 252-265.
    10. Modestra, J. Annie & Reddy, C. Nagendranatha & Krishna, K. Vamshi & Min, Booki & Mohan, S. Venkata, 2020. "Regulated surface potential impacts bioelectrogenic activity, interfacial electron transfer and microbial dynamics in microbial fuel cell," Renewable Energy, Elsevier, vol. 149(C), pages 424-434.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaping Wu & Xiaolong Wu & Yuanwu Xu & Yongjun Cheng & Xi Li, 2023. "A Novel Adaptive Neural Network-Based Thermoelectric Parameter Prediction Method for Enhancing Solid Oxide Fuel Cell System Efficiency," Sustainability, MDPI, vol. 15(19), pages 1-17, September.
    2. Hegazy Rezk & Abdul Ghani Olabi & Enas Taha Sayed & Samah Ibrahim Alshathri & Mohammad Ali Abdelkareem, 2023. "Optimized Artificial Intelligent Model to Boost the Efficiency of Saline Wastewater Treatment Based on Hunger Games Search Algorithm and ANFIS," Sustainability, MDPI, vol. 15(5), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halima Alnaqbi & Oussama El-Kadri & Mohammad Ali Abdelkareem & Sameer Al-Asheh, 2022. "Recent Progress in Metal-Organic Framework-Derived Chalcogenides (MX; X = S, Se) as Electrode Materials for Supercapacitors and Catalysts in Fuel Cells," Energies, MDPI, vol. 15(21), pages 1-25, November.
    2. Wilberforce, Tabbi & Abdelkareem, Mohammad Ali & Elsaid, Khaled & Olabi, A.G. & Sayed, Enas Taha, 2022. "Role of carbon-based nanomaterials in improving the performance of microbial fuel cells," Energy, Elsevier, vol. 240(C).
    3. Ahmed Fathy & Hegazy Rezk & Dalia Yousri & Abdullah G. Alharbi & Sulaiman Alshammari & Yahia B. Hassan, 2023. "Maximizing Bio-Hydrogen Production from an Innovative Microbial Electrolysis Cell Using Artificial Intelligence," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    4. Abdul Ghani Olabi & Tabbi Wilberforce & Abdulrahman Alanazi & Parag Vichare & Enas Taha Sayed & Hussein M. Maghrabie & Khaled Elsaid & Mohammad Ali Abdelkareem, 2022. "Novel Trends in Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 15(14), pages 1-35, July.
    5. Rezk, Hegazy & Ferahtia, Seydali & Djeroui, Ali & Chouder, Aissa & Houari, Azeddine & Machmoum, Mohamed & Abdelkareem, Mohammad Ali, 2022. "Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer," Energy, Elsevier, vol. 239(PC).
    6. Dawid Nosek & Piotr Jachimowicz & Agnieszka Cydzik-Kwiatkowska, 2020. "Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells," Energies, MDPI, vol. 13(24), pages 1-22, December.
    7. Andrzej Pacana & Karolina Czerwińska & Grzegorz Ostasz, 2023. "Analysis of the Level of Efficiency of Control Methods in the Context of Energy Intensity," Energies, MDPI, vol. 16(8), pages 1-26, April.
    8. Sittijunda, Sureewan & Reungsang, Alissara, 2020. "Valorization of crude glycerol into hydrogen, 1,3-propanediol, and ethanol in an up-flow anaerobic sludge blanket (UASB) reactor under thermophilic conditions," Renewable Energy, Elsevier, vol. 161(C), pages 361-372.
    9. Wen Si & Simeng Li & Huaishuo Xiao & Qingquan Li & Yalin Shi & Tongqiao Zhang, 2018. "Defect Pattern Recognition Based on Partial Discharge Characteristics of Oil-Pressboard Insulation for UHVDC Converter Transformer," Energies, MDPI, vol. 11(3), pages 1-19, March.
    10. Nassef, Ahmed M. & Olabi, A.G. & Rodriguez, Cristina & Abdelkareem, Mohammad Ali & Rezk, Hegazy, 2021. "Optimal operating parameter determination and modeling to enhance methane production from macroalgae," Renewable Energy, Elsevier, vol. 163(C), pages 2190-2197.
    11. Minh-Tuan Nguyen & Viet-Hung Nguyen & Suk-Jun Yun & Yong-Hwa Kim, 2018. "Recurrent Neural Network for Partial Discharge Diagnosis in Gas-Insulated Switchgear," Energies, MDPI, vol. 11(5), pages 1-13, May.
    12. Song, Yajie & Wang, Xinli & Wang, Lei & Pan, Fengwen & Chen, Wenmiao & Xi, Fuqiang, 2021. "A twin-nozzle ejector for hydrogen recirculation in wide power operation of polymer electrolyte membrane fuel cell system," Applied Energy, Elsevier, vol. 300(C).
    13. Chen, Wei & Chenbin, Xu & Wu, Haibo & Li, Zoulu & Zhang, Bin & Yan, He, 2021. "Thermal analysis and optimization of combined cold and power system with integrated phosphoric acid fuel cell and two-stage compression–absorption refrigerator at low evaporation temperature," Energy, Elsevier, vol. 216(C).
    14. Jiaying Deng & Wenhai Zhang & Xiaomei Yang, 2019. "Recognition and Classification of Incipient Cable Failures Based on Variational Mode Decomposition and a Convolutional Neural Network," Energies, MDPI, vol. 12(10), pages 1-16, May.
    15. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    16. Rajesh Banu Jeyakumar & Godvin Sharmila Vincent, 2022. "Recent Advances and Perspectives of Nanotechnology in Anaerobic Digestion: A New Paradigm towards Sludge Biodegradability," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    17. Ye, Yang & Yue, Yi & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials," Renewable Energy, Elsevier, vol. 180(C), pages 734-743.
    18. Chouhan, Raghuraj Singh & Gandhi, Sonu & Verma, Suresh K. & Jerman, Ivan & Baker, Syed & Štrok, Marko, 2023. "Recent advancements in the development of Two-Dimensional nanostructured based anode materials for stable power density in microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    19. Akan, Taner, 2023. "Can renewable energy mitigate the impacts of inflation and policy interest on climate change?," Renewable Energy, Elsevier, vol. 214(C), pages 255-289.
    20. Vo-Nguyen Tuyet-Doan & Tien-Tung Nguyen & Minh-Tuan Nguyen & Jong-Ho Lee & Yong-Hwa Kim, 2020. "Self-Attention Network for Partial-Discharge Diagnosis in Gas-Insulated Switchgear," Energies, MDPI, vol. 13(8), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:1878-:d:1040391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.