IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2094-d532969.html
   My bibliography  Save this article

Improved Formation Kinetics of Carbon Dioxide Hydrate in Brine Induced by Sodium Dodecyl Sulfate

Author

Listed:
  • Lu Liu

    (Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    Nano Science and Technology Institute, University of Science and Technology of China, Hefei 230027, China)

  • Yuanxin Yao

    (Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Xuebing Zhou

    (Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Yanan Zhang

    (Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Deqing Liang

    (Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

Abstract

Due to high efficiency and low cost, hydrate-based desalination is investigated as a pretreatment method for seawater desalination. To improve the formation rate of hydrates, the effect of sodium dodecyl sulfate (SDS) on CO 2 hydrate formation from a 3.5 wt.% NaCl solution was measured at 275 K and 3 MPa. X-ray diffraction (XRD) and cryo-scanning electron microscopy (cryo-SEM) were used to measure the crystal structure and micromorphology of the formed hydrates. The results showed that the induction time of CO 2 hydrate formation reduced from 32 to 2 min when SDS concentration increased from 0.01 to 0.05%, the hydrate conversion rate increased from 12.06 to 23.32%, and the remaining NaCl concentration increased from 3.997 to 4.515 wt.%. However, as the SDS concentration surpassed 0.05 wt.%, the induction time increased accompanied by a decrease in the hydrate conversion rate. XRD showed that the CO 2 hydrate was a structure I hydrate, and SDS had no influence on the hydrate structure. However, cryo-SEM images revealed that SDS promoted the formation of hydrates by increasing the specific surface area of the formed hydrates and folds; rods and clusters could be found on the surface of the CO 2 hydrate. Thus, the best SDS concentration for promoting CO 2 hydrate formation was approximately 0.05 wt.%; desalination was most efficient at this concentration.

Suggested Citation

  • Lu Liu & Yuanxin Yao & Xuebing Zhou & Yanan Zhang & Deqing Liang, 2021. "Improved Formation Kinetics of Carbon Dioxide Hydrate in Brine Induced by Sodium Dodecyl Sulfate," Energies, MDPI, vol. 14(8), pages 1-12, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2094-:d:532969
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2094/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2094/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark A. Shannon & Paul W. Bohn & Menachem Elimelech & John G. Georgiadis & Benito J. Mariñas & Anne M. Mayes, 2008. "Science and technology for water purification in the coming decades," Nature, Nature, vol. 452(7185), pages 301-310, March.
    2. Li, Xiao-Sen & Xu, Chun-Gang & Chen, Zhao-Yang & Wu, Hui-Jie, 2010. "Tetra-n-butyl ammonium bromide semi-clathrate hydrate process for post-combustion capture of carbon dioxide in the presence of dodecyl trimethyl ammonium chloride," Energy, Elsevier, vol. 35(9), pages 3902-3908.
    3. He, Tianbiao & Nair, Sajitha K. & Babu, Ponnivalavan & Linga, Praveen & Karimi, Iftekhar A., 2018. "A novel conceptual design of hydrate based desalination (HyDesal) process by utilizing LNG cold energy," Applied Energy, Elsevier, vol. 222(C), pages 13-24.
    4. Xuebing Zhou & Ye Zhang & Xiaoya Zang & Deqing Liang, 2020. "Formation Kinetics of the Mixed Cyclopentane—Carbon Dioxide Hydrates in Aqueous Sodium Chloride Solutions," Energies, MDPI, vol. 13(17), pages 1-10, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiwei Wang & Lin Wang & Zhen Hu & Youli Li & Qiang Sun & Aixian Liu & Lanying Yang & Jing Gong & Xuqiang Guo, 2021. "The Thermodynamic and Kinetic Effects of Sodium Lignin Sulfonate on Ethylene Hydrate Formation," Energies, MDPI, vol. 14(11), pages 1-19, June.
    2. Liu, Fa-Ping & Li, Ai-Rong & Qing, Sheng-Lan & Luo, Ze-Dong & Ma, Yu-Ling, 2022. "Formation kinetics, mechanism of CO2 hydrate and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhattacharjee, Gaurav & Veluswamy, Hari Prakash & Kumar, Rajnish & Linga, Praveen, 2020. "Seawater based mixed methane-THF hydrate formation at ambient temperature conditions," Applied Energy, Elsevier, vol. 271(C).
    2. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
    3. Kim, Soyoung & Choi, Sung-Deuk & Seo, Yongwon, 2017. "CO2 capture from flue gas using clathrate formation in the presence of thermodynamic promoters," Energy, Elsevier, vol. 118(C), pages 950-956.
    4. Guo, Qijing & Yi, Hao & Jia, Feifei & Song, Shaoxian, 2022. "Vertical porous MoS2/hectorite double-layered aerogel as superior salt resistant and highly efficient solar steam generators," Renewable Energy, Elsevier, vol. 194(C), pages 68-79.
    5. Milan Daus & Katharina Koberger & Kaan Koca & Felix Beckers & Jorge Encinas Fernández & Barbara Weisbrod & Daniel Dietrich & Sabine Ulrike Gerbersdorf & Rüdiger Glaser & Stefan Haun & Hilmar Hofmann &, 2021. "Interdisciplinary Reservoir Management—A Tool for Sustainable Water Resources Management," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    6. Veluswamy, Hari Prakash & Kumar, Asheesh & Premasinghe, Kulesha & Linga, Praveen, 2017. "Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system," Applied Energy, Elsevier, vol. 207(C), pages 573-583.
    7. Yan, Jin & Lu, Yi-Yu & Zhong, Dong-Liang & Zou, Zhen-Lin & Li, Jian-Bo, 2019. "Enhanced methane recovery from low-concentration coalbed methane by gas hydrate formation in graphite nanofluids," Energy, Elsevier, vol. 180(C), pages 728-736.
    8. Ding, Ya-Long & Xu, Chun-Gang & Yu, Yi-Song & Li, Xiao-Sen, 2017. "Methane recovery from natural gas hydrate with simulated IGCC syngas," Energy, Elsevier, vol. 120(C), pages 192-198.
    9. Qyyum, Muhammad Abdul & Qadeer, Kinza & Minh, Le Quang & Haider, Junaid & Lee, Moonyong, 2019. "Nitrogen self-recuperation expansion-based process for offshore coproduction of liquefied natural gas, liquefied petroleum gas, and pentane plus," Applied Energy, Elsevier, vol. 235(C), pages 247-257.
    10. Adeel ur Rehman & Bhajan Lal, 2022. "Gas Hydrate-Based CO 2 Capture: A Journey from Batch to Continuous," Energies, MDPI, vol. 15(21), pages 1-27, November.
    11. Veluswamy, Hari Prakash & Kumar, Rajnish & Linga, Praveen, 2014. "Hydrogen storage in clathrate hydrates: Current state of the art and future directions," Applied Energy, Elsevier, vol. 122(C), pages 112-132.
    12. Cheng, Zucheng & Li, Shaohua & Liu, Yu & Zhang, Yi & Ling, Zheng & Yang, Mingjun & Jiang, Lanlan & Song, Yongchen, 2022. "Post-combustion CO2 capture and separation in flue gas based on hydrate technology:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Janeth Marwa & Mesia Lufingo & Chicgoua Noubactep & Revocatus Machunda, 2018. "Defeating Fluorosis in the East African Rift Valley: Transforming the Kilimanjaro into a Rainwater Harvesting Park," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    14. Haneen Abdelrazeq & Majeda Khraisheh & Hafsa Mohammed Ashraf & Parisa Ebrahimi & Ansaruddin Kunju, 2021. "Sustainable Innovation in Membrane Technologies for Produced Water Treatment: Challenges and Limitations," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    15. Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
    16. Suárez, Francisco & Ruskowitz, Jeffrey A. & Tyler, Scott W. & Childress, Amy E., 2015. "Renewable water: Direct contact membrane distillation coupled with solar ponds," Applied Energy, Elsevier, vol. 158(C), pages 532-539.
    17. Xie, Guo & Sun, Licheng & Yan, Tiantong & Tang, Jiguo & Bao, Jingjing & Du, Min, 2018. "Model development and experimental verification for tubular solar still operating under vacuum condition," Energy, Elsevier, vol. 157(C), pages 115-130.
    18. Maleki, Akbar & Khajeh, Morteza Gholipour & Rosen, Marc A., 2016. "Weather forecasting for optimization of a hybrid solar-wind–powered reverse osmosis water desalination system using a novel optimizer approach," Energy, Elsevier, vol. 114(C), pages 1120-1134.
    19. Jin, Haichuan & Lin, Guiping & Zeiny, Aimen & Bai, Lizhan & Wen, Dongsheng, 2019. "Nanoparticle-based solar vapor generation: An experimental and numerical study," Energy, Elsevier, vol. 178(C), pages 447-459.
    20. Fang, Shibiao & Mu, Lin & Tu, Wenrong, 2021. "Application design and assessment of a novel small-decentralized solar distillation device based on energy, exergy, exergoeconomic, and enviroeconomic parameters," Renewable Energy, Elsevier, vol. 164(C), pages 1350-1363.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2094-:d:532969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.