IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i20p9071-d1502423.html
   My bibliography  Save this article

Macroscopic State-Level Analysis of Pavement Roughness Using Time–Space Econometric Modeling Methods

Author

Listed:
  • Mehmet Fettahoglu

    (Department of Civil, Structural and Environmental Engineering, University at Buffalo—The State University of New York, Buffalo, NY 14260, USA)

  • Sheikh Shahriar Ahmed

    (Steer Group, Brooklyn, NY 11201, USA)

  • Irina Benedyk

    (Department of Civil, Structural and Environmental Engineering, University at Buffalo—The State University of New York, Buffalo, NY 14260, USA)

  • Panagiotis Ch. Anastasopoulos

    (Department of Civil, Structural and Environmental Engineering, University at Buffalo—The State University of New York, Buffalo, NY 14260, USA
    Stephen Still Institute for Sustainable Transportation and Logistics, University at Buffalo—The State University of New York, Buffalo, NY 14260, USA)

Abstract

This paper used pavement condition data collected by the Federal Highway Administration (FHWA) between 2001 and 2006 aggregated by U.S. states to identify macroscopic factors affecting pavement roughness in time and space. To account for prior pavement conditions and preservation expenditure over time, time autocorrelation parameters were introduced in a spatial modeling scheme that accounted for spatial autocorrelation and heterogeneity. The proposed framework accommodates data aggregation in network-level pavement deterioration models. Because pavement roughness across different roadway classes is anticipated to be affected by different explanatory parameters, separate time–space models are estimated for nine roadway classes (rural interstate roads, rural collectors, urban minor arterials, urban principal arterials, and other freeways). The best model specifications revealed that different time–space models were appropriate for pavement performance modeling across the different roadway classes. Factors that were found to affect state-level pavement roughness in time and space included preservation expenditure, predominant soil type, and predominant climatic conditions. The results have the potential to assist governmental agencies in planning effectively for pavement preservation programs at a macroscopic level.

Suggested Citation

  • Mehmet Fettahoglu & Sheikh Shahriar Ahmed & Irina Benedyk & Panagiotis Ch. Anastasopoulos, 2024. "Macroscopic State-Level Analysis of Pavement Roughness Using Time–Space Econometric Modeling Methods," Sustainability, MDPI, vol. 16(20), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:9071-:d:1502423
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/20/9071/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/20/9071/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anselin, Luc & Bera, Anil K. & Florax, Raymond & Yoon, Mann J., 1996. "Simple diagnostic tests for spatial dependence," Regional Science and Urban Economics, Elsevier, vol. 26(1), pages 77-104, February.
    2. Jason Abrevaya & Jerry A. Hausman & Shakeeb Khan, 2010. "Testing for Causal Effects in a Generalized Regression Model With Endogenous Regressors," Econometrica, Econometric Society, vol. 78(6), pages 2043-2061, November.
    3. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
    4. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    5. repec:cdl:uctcwp:qt6cf8v5cw is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jørgen Lauridsen & Reinhold Kosfeld, 2007. "Spatial cointegration and heteroscedasticity," Journal of Geographical Systems, Springer, vol. 9(3), pages 253-265, September.
    2. Catherine Baumont & Cem Ertur & Julie Le Gallo, 2001. "A spatial econometric analysis of geographic spillovers and growth for European regions, 1980-1995," Working Papers hal-01526858, HAL.
    3. LE GALLO, Julie, 2000. "Econométrie spatiale 2 -Hétérogénéité spatiale," LATEC - Document de travail - Economie (1991-2003) 2001-01, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
    4. Julie Le Gallo, 2004. "Hétérogénéité spatiale : principes et méthodes," Économie et Prévision, Programme National Persée, vol. 162(1), pages 151-172.
    5. Li, Zhaoyuan & Yao, Jianfeng, 2019. "Testing for heteroscedasticity in high-dimensional regressions," Econometrics and Statistics, Elsevier, vol. 9(C), pages 122-139.
    6. Cem Ertur & Julie Le Gallo & Catherine Baumont, 2006. "The European Regional Convergence Process, 1980-1995: Do Spatial Regimes and Spatial Dependence Matter?," International Regional Science Review, , vol. 29(1), pages 3-34, January.
    7. Dufour, Jean-Marie & Khalaf, Lynda & Bernard, Jean-Thomas & Genest, Ian, 2004. "Simulation-based finite-sample tests for heteroskedasticity and ARCH effects," Journal of Econometrics, Elsevier, vol. 122(2), pages 317-347, October.
    8. Romano, Joseph P. & Wolf, Michael, 2017. "Resurrecting weighted least squares," Journal of Econometrics, Elsevier, vol. 197(1), pages 1-19.
    9. Olaru, Doina & Mulley, Corinne & Smith, Brett & Ma, Liang, 2017. "Policy-led selection of the most appropriate empirical model to estimate hedonic prices in the residential market," Journal of Transport Geography, Elsevier, vol. 62(C), pages 213-228.
    10. Tom Broekel & Thomas Brenner, 2011. "Regional factors and innovativeness: an empirical analysis of four German industries," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 47(1), pages 169-194, August.
    11. Chasco, Coro & Le Gallo, Julie & López, Fernando A., 2018. "A scan test for spatial groupwise heteroscedasticity in cross-sectional models with an application on houses prices in Madrid," Regional Science and Urban Economics, Elsevier, vol. 68(C), pages 226-238.
    12. Jana Jurečková & Radim Navrátil, 2014. "Rank tests in heteroscedastic linear model with nuisance parameters," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(3), pages 433-450, April.
    13. Julie Le Gallo, 2000. "Spatial econometrics (2, Spatial heterogeneity) [Econométrie spatiale (2, Hétérogénéité spatiale)]," Working Papers hal-01526969, HAL.
    14. López-Hernández, Fernando A., 2013. "Second-order polynomial spatial error model. Global and local spatial dependence in unemployment in Andalusia," Economic Modelling, Elsevier, vol. 33(C), pages 270-279.
    15. Manuel Frondel & Nolan Ritter & Colin Vance, 2010. "Heterogeneity in the Rebound Eff ect – Further Evidence for Germany," Ruhr Economic Papers 0227, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    16. Figuet, Jean-Marc & Humblot, Thomas & Lahet, Delphine, 2015. "Cross-border banking claims on emerging countries: The Basel III Banking Reforms in a push and pull framework," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 34(C), pages 294-310.
    17. Dawei Lu & Yi Ding & Sobhan Asian & Sanjoy Kumar Paul, 2018. "From Supply Chain Integration to Operational Performance: The Moderating Effect of Market Uncertainty," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 19(1), pages 3-20, March.
    18. Jesús Mur & Fernando López & Ana Angulo, 2009. "Testing the hypothesis of stability in spatial econometric models," Papers in Regional Science, Wiley Blackwell, vol. 88(2), pages 409-444, June.
    19. Clarke, George R. G., 1995. "More evidence on income distribution and growth," Journal of Development Economics, Elsevier, vol. 47(2), pages 403-427, August.
    20. Johan Lundberg, 2006. "Using spatial econometrics to analyse local growth in Sweden," Regional Studies, Taylor & Francis Journals, vol. 40(3), pages 303-316.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:9071-:d:1502423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.