IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i17p7337-d1464373.html
   My bibliography  Save this article

Knowledge Graph of Low-Carbon Technologies in the Energy Sector and Cost Evolution Based on LDA2Vec: A Case Study in China

Author

Listed:
  • Xingjiu Zhao

    (School of Economics and Management, Beijing University of Technology, Beijing 100124, China)

  • Zhiwen Peng

    (School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing 100876, China)

  • Sibao Fu

    (School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing 100876, China)

Abstract

Climate change has attracted global attention, highlighting the critical role of low-carbon technologies in addressing environmental challenges. Due to the multidisciplinary nature, complexity, and diversity of research content on low-carbon technologies, a comprehensive overview is still limited. This paper uses bibliometrics analysis to discuss the research status and hotspots of low-carbon technology from a macro-perspective. The LDA2Vec topic recognition model is adopted to identify key technical terms, and CiteSpace software 6.3.1 Advanced Edition is used to conduct in-depth analysis of the development trajectory of low-carbon technology. After checking the frequency of the relevant keywords, four key techniques were identified. In order to further analyze the research results, the learning curve theory is used to predict the cost development trend of key low-carbon technologies. The results show that: (i) low-carbon technologies play a key role in the energy sector and have a potential impact on policy making, and the cost of related technologies will be significantly reduced in the next few years. (ii) Global low-carbon technologies have entered an important period of development, but remaining challenges need to be addressed by optimizing technological performance. (iii) It is very important to strengthen the research on hydrogen production technology and photovoltaic power generation technology; the cost reduction in hydrogen production technology is still significant and there is room for further optimization. (iv) To effectively address the high costs and technical barriers associated with emerging low-carbon technologies, increased funding for research and development is critical.

Suggested Citation

  • Xingjiu Zhao & Zhiwen Peng & Sibao Fu, 2024. "Knowledge Graph of Low-Carbon Technologies in the Energy Sector and Cost Evolution Based on LDA2Vec: A Case Study in China," Sustainability, MDPI, vol. 16(17), pages 1-26, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7337-:d:1464373
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/17/7337/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/17/7337/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Napp, T.A. & Few, S. & Sood, A. & Bernie, D. & Hawkes, A. & Gambhir, A., 2019. "The role of advanced demand-sector technologies and energy demand reduction in achieving ambitious carbon budgets," Applied Energy, Elsevier, vol. 238(C), pages 351-367.
    2. Morris, Jennifer & Paltsev, Sergey & Ku, Anthony Y., 2019. "Impacts of China's emissions trading schemes on deployment of power generation with carbon capture and storage," Energy Economics, Elsevier, vol. 81(C), pages 848-858.
    3. Shigong Lv & Yanying Lv & Da Gao & Lulu Liu, 2023. "The Path to Green Development: The Impact of a Carbon Emissions Trading Scheme on Enterprises’ Environmental Protection Investments," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Andreou & Panagiotis Fragkos & Theofano Fotiou & Faidra Filippidou, 2022. "Assessing Lifestyle Transformations and Their Systemic Effects in Energy-System and Integrated Assessment Models: A Review of Current Methods and Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
    2. Sonja Sechi & Sara Giarola & Pierluigi Leone, 2022. "Taxonomy for Industrial Cluster Decarbonization: An Analysis for the Italian Hard-to-Abate Industry," Energies, MDPI, vol. 15(22), pages 1-31, November.
    3. Koasidis, Konstantinos & Marinakis, Vangelis & Nikas, Alexandros & Chira, Katerina & Flamos, Alexandros & Doukas, Haris, 2022. "Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece," Energy Policy, Elsevier, vol. 161(C).
    4. Yang, Dongfeng & Xu, Yang & Liu, Xiaojun & Jiang, Chao & Nie, Fanjie & Ran, Zixu, 2022. "Economic-emission dispatch problem in integrated electricity and heat system considering multi-energy demand response and carbon capture Technologies," Energy, Elsevier, vol. 253(C).
    5. Feng Liu & Tao Lv & Yuan Meng & Xiaoran Hou & Jie Xu & Xu Deng, 2022. "Low-Carbon Transition Paths of Coal Power in China’s Provinces under the Context of the Carbon Trading Scheme," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
    6. Yamaguchi, Yohei & Kim, Bumjoon & Kitamura, Takuya & Akizawa, Kotone & Chen, Hemiao & Shimoda, Yoshiyuki, 2022. "Building stock energy modeling considering building system composition and long-term change for climate change mitigation of commercial building stocks," Applied Energy, Elsevier, vol. 306(PA).
    7. Oshiro, Ken & Fujimori, Shinichiro, 2022. "Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals," Applied Energy, Elsevier, vol. 313(C).
    8. Mo, Jianlei & Cui, Lianbiao & Duan, Hongbo, 2021. "Quantifying the implied risk for newly-built coal plant to become stranded asset by carbon pricing," Energy Economics, Elsevier, vol. 99(C).
    9. Chen, Shangrong & Bravo-Melgarejo, Sai & Mongeau, Romain & Malavolti, Estelle, 2023. "Adopting and diffusing hydrogen technology in air transport: An evolutionary game theory approach," Energy Economics, Elsevier, vol. 125(C).
    10. Anser, Muhammad Khalid & Yousaf, Zahid & Zaman, Khalid & Nassani, Abdelmohsen A. & Alotaibi, Saad M. & Jambari, Hanifah & Khan, Aqeel & Kabbani, Ahmad, 2020. "Determination of resource curse hypothesis in mediation of financial development and clean energy sources: Go-for-green resource policies," Resources Policy, Elsevier, vol. 66(C).
    11. Bempah, Kwabena Opoku & Kwon, Kyoungjun & Kim, Katherine A., 2019. "Experimental study of photovoltaic panel mounting configurations for tube-shaped structures," Applied Energy, Elsevier, vol. 240(C), pages 754-765.
    12. Jin, Yi & Scherer, Laura & Sutanudjaja, Edwin H. & Tukker, Arnold & Behrens, Paul, 2022. "Climate change and CCS increase the water vulnerability of China's thermoelectric power fleet," Energy, Elsevier, vol. 245(C).
    13. Brockway, Paul E. & Sorrell, Steve & Semieniuk, Gregor & Heun, Matthew Kuperus & Court, Victor, 2021. "Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Rahman, Arief & Richards, Russell & Dargusch, Paul & Wadley, David, 2023. "Pathways to reduce Indonesia’s dependence on oil and achieve longer-term decarbonization," Renewable Energy, Elsevier, vol. 202(C), pages 1305-1323.
    15. Yao, Xing & Fan, Ying & Zhu, Lei & Zhang, Xian, 2020. "Optimization of dynamic incentive for the deployment of carbon dioxide removal technology: A nonlinear dynamic approach combined with real options," Energy Economics, Elsevier, vol. 86(C).
    16. Shihong Zeng & Gen Li & Shaomin Wu & Zhanfeng Dong, 2022. "The Impact of Green Technology Innovation on Carbon Emissions in the Context of Carbon Neutrality in China: Evidence from Spatial Spillover and Nonlinear Effect Analysis," IJERPH, MDPI, vol. 19(2), pages 1-25, January.
    17. Zhao, Tian & Liu, Zhixin, 2019. "A novel analysis of carbon capture and storage (CCS) technology adoption: An evolutionary game model between stakeholders," Energy, Elsevier, vol. 189(C).
    18. Fan, Jing-Li & Li, Zezheng & Li, Kai & Zhang, Xian, 2022. "Modelling plant-level abatement costs and effects of incentive policies for coal-fired power generation retrofitted with CCUS," Energy Policy, Elsevier, vol. 165(C).
    19. Feng Liu & Yihang Wei & Yu Du & Tao Lv, 2022. "Mechanism and Influencing Factors of Low-Carbon Coal Power Transition under China’s Carbon Trading Scheme: An Evolutionary Game Analysis," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    20. Ajay Gambhir & Shivika Mittal & Robin D. Lamboll & Neil Grant & Dan Bernie & Laila Gohar & Adam Hawkes & Alexandre Köberle & Joeri Rogelj & Jason A. Lowe, 2023. "Adjusting 1.5 degree C climate change mitigation pathways in light of adverse new information," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7337-:d:1464373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.