IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6298-d1441146.html
   My bibliography  Save this article

Vehicle Stock Numbers and Survival Functions for On-Road Exhaust Emissions Analysis in India: 1993–2018

Author

Listed:
  • Sarath K. Guttikunda

    (Transportation Research and Injury Prevention Centre, Indian Institute of Technology, New Delhi 110016, India
    Urban Emissions Information, New Delhi 110001, India)

Abstract

Road transport plays a crucial role in sustaining all the personal and freight movement needs of residential, commercial, and industrial activities, and in Indian cities, big and small, vehicle exhaust emissions and dust from vehicle movement on the roads contribute to as much as 50% of particulate matter pollution in a year. Therefore, effective management of vehicle exhaust emissions is vital not only for improving current air quality but also for ensuring the long-term benefits from efforts to reduce air pollution. In the approved clean air action plans for 131 cities under the national clean air program (NCAP), more than 50% of the implementable actions are transport-centric. Having a reliable and replicable vehicle exhaust emissions inventory is essential for effective planning, which can help establish a baseline, support scenario analysis, and allow for tracking progress in the sector. This process begins with accessing accurate vehicle stock numbers, typically obtained from vehicle registration databases, traffic surveys, and other governmental records. Often, in low- and middle-income countries like India, these numbers require extensive data cleaning before they can be used for emissions and pollution analysis. This paper presents a cleaned, open-access vehicle stock database for India and outlines a methodology to build and maintain an in-use vehicle age-mix database for future years. The database covers the years 1993 to 2018 for the entire country and individual states, along with estimates of the age distribution of vehicles using survival functions. By offering a comprehensive and reliable data source, this paper aims to support sustainable national and urban air quality management efforts, helping policymakers and stakeholders make informed decisions to improve air quality and public health.

Suggested Citation

  • Sarath K. Guttikunda, 2024. "Vehicle Stock Numbers and Survival Functions for On-Road Exhaust Emissions Analysis in India: 1993–2018," Sustainability, MDPI, vol. 16(15), pages 1-14, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6298-:d:1441146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6298/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6298/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dhar, Subash & Shukla, Priyadarshi R., 2015. "Low carbon scenarios for transport in India: Co-benefits analysis," Energy Policy, Elsevier, vol. 81(C), pages 186-198.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rohit Sharma, 2018. "Financing Indian Urban Rail through Land Development: Case Studies and Implications for the Accelerated Reduction in Oil Associated with 1.5 °C," Urban Planning, Cogitatio Press, vol. 3(2), pages 21-34.
    2. Yongsheng Lin & Zhe Liu & Rui Liu & Xiaoman Yu & Liming Zhang, 2020. "Uncovering driving forces of co-benefits achieved by eco-industrial development strategies at the scale of industrial park," Energy & Environment, , vol. 31(2), pages 275-290, March.
    3. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    4. Moradi, Afsaneh & Vagnoni, Emidia, 2018. "A multi-level perspective analysis of urban mobility system dynamics: What are the future transition pathways?," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 231-243.
    5. Alshehry, Atef Saad & Belloumi, Mounir, 2017. "Study of the environmental Kuznets curve for transport carbon dioxide emissions in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1339-1347.
    6. Paladugula, Anantha Lakshmi & Kholod, Nazar & Chaturvedi, Vaibhav & Ghosh, Probal Pratap & Pal, Sarbojit & Clarke, Leon & Evans, Meredydd & Kyle, Page & Koti, Poonam Nagar & Parikh, Kirit & Qamar, Sha, 2018. "A multi-model assessment of energy and emissions for India's transportation sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 10-18.
    7. Jorge M. Islas-Samperio & Fabio Manzini & Genice K. Grande-Acosta, 2019. "Toward a Low-Carbon Transport Sector in Mexico," Energies, MDPI, vol. 13(1), pages 1-27, December.
    8. John P. Barton & Murray Thomson, 2021. "Solar Power and Energy Storage for Decarbonization of Land Transport in India," Energies, MDPI, vol. 14(24), pages 1-24, December.
    9. Dioha, Michael O. & Kumar, Atul, 2020. "Sustainable energy pathways for land transport in Nigeria," Utilities Policy, Elsevier, vol. 64(C).
    10. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    11. Munshi, Talat & Dhar, Subash & Painuly, Jyoti, 2022. "Understanding barriers to electric vehicle adoption for personal mobility: A case study of middle income in-service residents in Hyderabad city, India," Energy Policy, Elsevier, vol. 167(C).
    12. Fiamma Perez-Prada & Andres Monzon & Cristina Valdes, 2017. "Managing Traffic Flows for Cleaner Cities: The Role of Green Navigation Systems," Energies, MDPI, vol. 10(6), pages 1-18, June.
    13. Hofbauer, Leonhard & McDowall, Will & Pye, Steve, 2022. "Challenges and opportunities for energy system modelling to foster multi-level governance of energy transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Shankar, Ravi & Pathak, Devendra Kumar & Choudhary, Devendra, 2019. "Decarbonizing freight transportation: An integrated EFA-TISM approach to model enablers of dedicated freight corridors," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 85-100.
    15. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
    16. Jones, Steven & Lidbe, Abhay & Hainen, Alex, 2019. "What can open access data from India tell us about road safety and sustainable development?," Journal of Transport Geography, Elsevier, vol. 80(C).
    17. Shu, Tony & Papageorgiou, Dimitri J. & Harper, Michael R. & Rajagopalan, Srinivasan & Rudnick, Iván & Botterud, Audun, 2023. "From coal to variable renewables: Impact of flexible electric vehicle charging on the future Indian electricity sector," Energy, Elsevier, vol. 269(C).
    18. Zhu, Lichao, 2023. "Comparative evaluation of CO2 emissions from transportation in countries around the world," Journal of Transport Geography, Elsevier, vol. 110(C).
    19. Shubham Gupta & Raghav Khanna & Pranay Kohli & Sarthak Agnihotri & Umang Soni & M. Asjad, 2023. "Risk evaluation of electric vehicle charging infrastructure using Fuzzy AHP – a case study in India," Operations Management Research, Springer, vol. 16(1), pages 245-258, March.
    20. Prasad, Ravita D. & Raturi, Atul, 2018. "Low-carbon measures for Fiji's land transport energy system," Utilities Policy, Elsevier, vol. 54(C), pages 132-147.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6298-:d:1441146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.