IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p4069-d1393601.html
   My bibliography  Save this article

Weighted Average Ensemble-Based PV Forecasting in a Limited Environment with Missing Data of PV Power

Author

Listed:
  • Dae-Sung Lee

    (Department of Next Generation Smart Energy System Convergence, Gachon University, Seongnam-si 13120, Republic of Korea)

  • Sung-Yong Son

    (Department of Next Generation Smart Energy System Convergence, Gachon University, Seongnam-si 13120, Republic of Korea)

Abstract

Photovoltaic (PV) power is subject to variability, influenced by factors such as meteorological conditions. This variability introduces uncertainties in forecasting, underscoring the necessity for enhanced forecasting models to support the large-scale integration of PV systems. Moreover, the presence of missing data during the model development process significantly impairs model performance. To address this, it is essential to impute missing data from the collected datasets before advancing with model development. Recent advances in imputation methods, including Multivariate Imputation by Chained Equations (MICEs), K-Nearest Neighbors (KNNs), and Generative Adversarial Imputation Networks (GAINs), have exhibited commendable efficacy. Nonetheless, models derived solely from a single imputation method often exhibit diminished performance under varying weather conditions. Consequently, this study introduces a weighted average ensemble model that combines multiple imputation-based models. This innovative approach adjusts the weights according to “sky status” and evaluates the performance of single-imputation models using criteria such as sky status, root mean square error (RMSE), and mean absolute error (MAE), integrating them into a comprehensive weighted ensemble model. This model demonstrates improved RMSE values, ranging from 74.805 to 74.973, which corresponds to performance enhancements of 3.293–3.799% for KNN and 3.190–4.782% for MICE, thereby affirming its effectiveness in scenarios characterized by missing data.

Suggested Citation

  • Dae-Sung Lee & Sung-Yong Son, 2024. "Weighted Average Ensemble-Based PV Forecasting in a Limited Environment with Missing Data of PV Power," Sustainability, MDPI, vol. 16(10), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4069-:d:1393601
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/4069/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/4069/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Guodong & Zhang, Mengfan & Gong, Yanfeng & Xu, Qianwen, 2023. "Safe multi-agent deep reinforcement learning for real-time decentralized control of inverter based renewable energy resources considering communication delay," Applied Energy, Elsevier, vol. 349(C).
    2. Putri Nor Liyana Mohamad Radzi & Muhammad Naveed Akhter & Saad Mekhilef & Noraisyah Mohamed Shah, 2023. "Review on the Application of Photovoltaic Forecasting Using Machine Learning for Very Short- to Long-Term Forecasting," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    3. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    4. Shireen, Tahasin & Shao, Chenhui & Wang, Hui & Li, Jingjing & Zhang, Xi & Li, Mingyang, 2018. "Iterative multi-task learning for time-series modeling of solar panel PV outputs," Applied Energy, Elsevier, vol. 212(C), pages 654-662.
    5. Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
    6. Andi A. H. Lateko & Hong-Tzer Yang & Chao-Ming Huang, 2022. "Short-Term PV Power Forecasting Using a Regression-Based Ensemble Method," Energies, MDPI, vol. 15(11), pages 1-21, June.
    7. Zhao, Jing & Guo, Zhen-Hai & Su, Zhong-Yue & Zhao, Zhi-Yuan & Xiao, Xia & Liu, Feng, 2016. "An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed," Applied Energy, Elsevier, vol. 162(C), pages 808-826.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zhongshan & Wang, Jian, 2018. "A hybrid forecasting approach applied in wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Energy, Elsevier, vol. 160(C), pages 87-100.
    2. Ping Jiang & Zeng Wang & Kequan Zhang & Wendong Yang, 2017. "An Innovative Hybrid Model Based on Data Pre-Processing and Modified Optimization Algorithm and Its Application in Wind Speed Forecasting," Energies, MDPI, vol. 10(7), pages 1-29, July.
    3. Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
    4. Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
    5. Tian, Chaonan & Niu, Tong & Wei, Wei, 2022. "Developing a wind power forecasting system based on deep learning with attention mechanism," Energy, Elsevier, vol. 257(C).
    6. Yang, Zhongshan & Wang, Jian, 2018. "A combination forecasting approach applied in multistep wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Applied Energy, Elsevier, vol. 230(C), pages 1108-1125.
    7. Miguel López Santos & Xela García-Santiago & Fernando Echevarría Camarero & Gonzalo Blázquez Gil & Pablo Carrasco Ortega, 2022. "Application of Temporal Fusion Transformer for Day-Ahead PV Power Forecasting," Energies, MDPI, vol. 15(14), pages 1-22, July.
    8. Wang, Jian & Yang, Zhongshan, 2021. "Ultra-short-term wind speed forecasting using an optimized artificial intelligence algorithm," Renewable Energy, Elsevier, vol. 171(C), pages 1418-1435.
    9. Song, Jingjing & Wang, Jianzhou & Lu, Haiyan, 2018. "A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 215(C), pages 643-658.
    10. Jin, Feng & Li, Yongwu & Sun, Shaolong & Li, Hongtao, 2020. "Forecasting air passenger demand with a new hybrid ensemble approach," Journal of Air Transport Management, Elsevier, vol. 83(C).
    11. Mateusz Sumorek & Adam Idzkowski, 2023. "Time Series Forecasting for Energy Production in Stand-Alone and Tracking Photovoltaic Systems Based on Historical Measurement Data," Energies, MDPI, vol. 16(17), pages 1-23, September.
    12. Dong, Qingli & Sun, Yuhuan & Li, Peizhi, 2017. "A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China," Renewable Energy, Elsevier, vol. 102(PA), pages 241-257.
    13. Wang, Ying & Wang, Jianzhou & Li, Zhiwu & Yang, Hufang & Li, Hongmin, 2021. "Design of a combined system based on two-stage data preprocessing and multi-objective optimization for wind speed prediction," Energy, Elsevier, vol. 231(C).
    14. Yechi Zhang & Jianzhou Wang & Haiyan Lu, 2019. "Research and Application of a Novel Combined Model Based on Multiobjective Optimization for Multistep-Ahead Electric Load Forecasting," Energies, MDPI, vol. 12(10), pages 1-27, May.
    15. Du, Pei & Wang, Jianzhou & Yang, Wendong & Niu, Tong, 2018. "Multi-step ahead forecasting in electrical power system using a hybrid forecasting system," Renewable Energy, Elsevier, vol. 122(C), pages 533-550.
    16. Ambach, Daniel & Schmid, Wolfgang, 2017. "A new high-dimensional time series approach for wind speed, wind direction and air pressure forecasting," Energy, Elsevier, vol. 135(C), pages 833-850.
    17. Xiao, Liye & Shao, Wei & Yu, Mengxia & Ma, Jing & Jin, Congjun, 2017. "Research and application of a hybrid wavelet neural network model with the improved cuckoo search algorithm for electrical power system forecasting," Applied Energy, Elsevier, vol. 198(C), pages 203-222.
    18. Hauzenberger, Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2025. "Bayesian neural networks for macroeconomic analysis," Journal of Econometrics, Elsevier, vol. 249(PC).
    19. João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020. "Nowcasting East German GDP growth: a MIDAS approach," Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
    20. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4069-:d:1393601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.