IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7079-d1130942.html
   My bibliography  Save this article

Pelletized Straw Incorporation in Sandy Soil Increases Soil Aggregate Stability, Soil Carbon, and Nitrogen Stocks

Author

Listed:
  • Yan Zhang

    (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    College of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China)

  • Ji Zhao

    (College of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China)

  • Hongyuan Wang

    (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Huancheng Pang

    (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

Abstract

In China, increasing the quantity and quality of total carbon and nitrogen stocks in sandy soil used for crop production is an important research issue. Soil amendment with pelletized straw could improve both soil physical structure and fertility in sandy soils, but these aspects remain understudied. The present pot and field experiments examined the dynamic changes in sandy soil water holding capacity, soil bulk density, soil total carbon and nitrogen stocks, and the distribution of water-stable aggregates and soil total carbon stocks related to aggregates across the following treatments: no fertilization (i.e., study control (CK)), normal fertilizer rate (NM), soil amendment at 150 Mg ha −1 (S150), manure amendment at 150 Mg ha −1 (M150), pelletized straw amendment at 75 Mg ha −1 (PS75), and pelletized straw amendment at 150 Mg ha −1 (PS150). The results show that the pelletized straw incorporation significantly increased water holding capacity and decreased soil bulk density. PS150 notably increased the large macroaggregates (>2000 μm) proportion and decreased the ratio of <250 μm aggregate size fractions in comparison with CK, NM, S150, and M150 at 0–20 and 20–40 cm soil depths. Compared with the CK treatment, the bulk soil carbon and nitrogen stocks in the 0–20 cm layers under the PS150 treatment were significantly increased by 85.2% and 302.9%, and in the 20–40 cm layers those increased by 136.4% and 257.1%, respectively. The PS150 treatment resulted in higher soil organic carbon (SOC) and particulate organic carbon content than the CK and PS75 treatments, whereas the PS75 treatment achieved maximum soil inorganic carbon content. The pelletized straw treatment increased the large macroaggregate-associated soil total carbon content at 0–20 and 20–40 cm soil depths. The maximum soil total carbon stocks were in the small macroaggregates (250 < WSA < 2000 μm) rather than in the large macroaggregate and microaggregates under the PS75 and PS150 treatments. Additionally, the pelletized straw and manure amendments increased the yield of silage corn, which was dependent on the increase in soil total carbon and nitrogen content in the macroaggregates, whereas the soil and manure amendments did not facilitate sandy soil aggregation and soil total carbon stock increases. In conclusion, PS150 was found to be the optimal amendment for maintaining sandy soil profile physico-chemical properties through macroaggregate stabilization. These results will be beneficial for arid and semi-arid regions, thus contributing to soil carbon and nitrogen conservation.

Suggested Citation

  • Yan Zhang & Ji Zhao & Hongyuan Wang & Huancheng Pang, 2023. "Pelletized Straw Incorporation in Sandy Soil Increases Soil Aggregate Stability, Soil Carbon, and Nitrogen Stocks," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7079-:d:1130942
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7079/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7079/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rashid, Muhammad Adil & Zhang, Xiying & Andersen, Mathias Neumann & Olesen, Jørgen Eivind, 2019. "Can mulching of maize straw complement deficit irrigation to improve water use efficiency and productivity of winter wheat in North China Plain?," Agricultural Water Management, Elsevier, vol. 213(C), pages 1-11.
    2. Cameron M. Pittelkow & Xinqiang Liang & Bruce A. Linquist & Kees Jan van Groenigen & Juhwan Lee & Mark E. Lundy & Natasja van Gestel & Johan Six & Rodney T. Venterea & Chris van Kessel, 2015. "Productivity limits and potentials of the principles of conservation agriculture," Nature, Nature, vol. 517(7534), pages 365-368, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhe Zhao & Yali Yang & Hongtu Xie & Yixin Zhang & Hongbo He & Xudong Zhang & Shijun Sun, 2024. "Enhancing Sustainable Agriculture in China: A Meta-Analysis of the Impact of Straw and Manure on Crop Yield and Soil Fertility," Agriculture, MDPI, vol. 14(3), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    2. Peipei Yang & Wenxu Dong & Marius Heinen & Wei Qin & Oene Oenema, 2022. "Soil Compaction Prevention, Amelioration and Alleviation Measures Are Effective in Mechanized and Smallholder Agriculture: A Meta-Analysis," Land, MDPI, vol. 11(5), pages 1-18, April.
    3. Wondimagegn Tesfaye & Garrick Blalock & Nyasha Tirivayi, 2021. "Climate‐Smart Innovations and Rural Poverty in Ethiopia: Exploring Impacts and Pathways," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 878-899, May.
    4. Lalani, Baqir & Aminpour, Payam & Gray, Steven & Williams, Meredith & Büchi, Lucie & Haggar, Jeremy & Grabowski, Philip & Dambiro, José, 2021. "Mapping farmer perceptions, Conservation Agriculture practices and on-farm measurements: The role of systems thinking in the process of adoption," Agricultural Systems, Elsevier, vol. 191(C).
    5. Dardonville, Manon & Legrand, Baptiste & Clivot, Hugues & Bernardin, Claire & Bockstaller, Christian & Therond, Olivier, 2022. "Assessment of ecosystem services and natural capital dynamics in agroecosystems," Ecosystem Services, Elsevier, vol. 54(C).
    6. Adam M. Komarek, 2018. "Conservation agriculture in western China increases productivity and profits without decreasing resilience," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(5), pages 1251-1262, October.
    7. Somasundaram Jayaraman & Yash P. Dang & Anandkumar Naorem & Kathryn L. Page & Ram C. Dalal, 2021. "Conservation Agriculture as a System to Enhance Ecosystem Services," Agriculture, MDPI, vol. 11(8), pages 1-14, July.
    8. Yang, Xuan & Zheng, Lina & Yang, Qian & Wang, Zikui & Cui, Song & Shen, Yuying, 2018. "Modelling the effects of conservation tillage on crop water productivity, soil water dynamics and evapotranspiration of a maize-winter wheat-soybean rotation system on the Loess Plateau of China using," Agricultural Systems, Elsevier, vol. 166(C), pages 111-123.
    9. Xiaolin Guo & Guanming Shi & Linyi Zheng & Wenrong Qian, 2022. "How Does the Land Rental Market Participation Affect Household Efficiency? Evidence from Rural China," IJERPH, MDPI, vol. 19(23), pages 1-14, December.
    10. Barbieri, Pietro & Starck, Thomas & Voisin, Anne-Sophie & Nesme, Thomas, 2023. "Biological nitrogen fixation of legumes crops under organic farming as driven by cropping management: A review," Agricultural Systems, Elsevier, vol. 205(C).
    11. Raymond Mugandani & Liboster Mwadzingeni & Paramu Mafongoya, 2021. "Contribution of Conservation Agriculture to Soil Security," Sustainability, MDPI, vol. 13(17), pages 1-11, September.
    12. Christian Thierfelder & Pauline Chivenge & Walter Mupangwa & Todd S. Rosenstock & Christine Lamanna & Joseph X. Eyre, 2017. "How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(3), pages 537-560, June.
    13. Wang, Ying & Shi, Wenjuan & Wen, Tianyang, 2023. "Prediction of winter wheat yield and dry matter in North China Plain using machine learning algorithms for optimal water and nitrogen application," Agricultural Water Management, Elsevier, vol. 277(C).
    14. Adjognon,Guigonan Serge & Nguyen Huy,Tung & Guthoff,Jonas Christoph & van Soest,Daan, 2022. "Incentivizing Social Learning for the Diffusion of Climate-Smart Agricultural Techniques," Policy Research Working Paper Series 10041, The World Bank.
    15. Rachid Aboutayeb & Aziz Baidani & Abdelmonim Zeroual & Nadia Benbrahim & Abdellah El Aissaoui & Hanane Ouhemi & Chafika Houasli & Elisabetta Mazzucotelli & Agata Gadaleta & Omar Idrissi, 2023. "Genetic Variability for Iron, Zinc, and Protein Content in a Mediterranean Lentil Collection Grown under No-Till Conditions: Towards Biofortification under Conservation Agriculture," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    16. Ward, Patrick S. & Mapemba, Lawrence & Bell, Andrew R., 2021. "Smart subsidies for sustainable soils: Evidence from a randomized controlled trial in southern Malawi," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    17. Nisar, Shahida & Benbi, Dinesh Kumar & Toor, Amardeep Singh, 2021. "Energy budgeting and carbon footprints of three tillage systems in maize-wheat sequence of north-western Indo-Gangetic Plains," Energy, Elsevier, vol. 229(C).
    18. Fahui Jiang & Shangshu Huang & Yan Wu & Mahbub Ul Islam & Fangjin Dong & Zhen Cao & Guohui Chen & Yuming Guo, 2022. "A Large-Scale Dataset of Conservation and Deep Tillage in Mollisols, Northeast Plain, China," Data, MDPI, vol. 8(1), pages 1-15, December.
    19. Kirui, Oliver & Tambo, Justice, 2021. "Yield Effects of Conservation Agriculture Under Fall Armyworm Stress: The Case of Zambia," 2021 Conference, August 17-31, 2021, Virtual 315882, International Association of Agricultural Economists.
    20. Tingting Li & Yanfei Wang & Changquan Liu & Shuangshuang Tu, 2021. "Research on Identification of Multiple Cropping Index of Farmland and Regional Optimization Scheme in China Based on NDVI Data," Land, MDPI, vol. 10(8), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7079-:d:1130942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.