IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5506-d1102998.html
   My bibliography  Save this article

A Modeling Study Focused on Improving the Aerodynamic Performance of a Small Horizontal Axis Wind Turbine

Author

Listed:
  • Sikandar Khan

    (Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

Abstract

The excessive burning of the fossil fuels has excessively changed the global temperature in the last few decades. The global warming caused due to the burning of the fossil fuels has initiated a need of increasing the use of renewal energy sources. The wind energy is one of the renewable energy sources that can mitigate the excessive global dependency on the fossil fuels. For locations with low-to-medium wind speeds (less than 7 m/s), the main problem is with the starting of the wind turbine. To start a stationary wind turbine, not only is it necessary to overcome the inertia and static friction of the turbine, but the angle of incidence of the wind relative to blade profile also needs to be favorable. Thus, at low wind speeds, the resulting low torque is not enough to start the turbine. It is, therefore, necessary to incorporate a good starting torque in the design requirements of turbines. In this paper, a modeling study is performed using the Pro/E, ADAMS and MATLAB software to improve the starting behavior of a horizontal axis wind turbine for the Cherat location in the northern areas of Pakistan. The yearly average wind speed in the northern areas of Pakistan is less than 5 m/s. The blade element momentum (BEM) theory is used to calculate the optimized wind turbine blade parameters (blade angles and chord lengths) that correspond to the maximum starting torque. Based on the optimized wind turbine blade parameters, Pro/E models were developed and imported to ADAMS software to calculate the torque. As compared to the initial wind turbine model, for the optimized wind turbine model, the starting torque increased from 22.5 N-m to 28 N-m and the coefficient of performance (COP) increased from 0.42 to 0.49 at a tip–speed ratio of 4. The starting torque of the wind turbine should exceed the resistive torques due to bearing friction, generator static, dynamic torque and the inertia of the rotor in order to start the wind turbine. The starting behavior of the horizontal axis wind turbine was successfully improved, and the optimized wind turbine model showed an increased starting torque for low-to-medium wind speed ranges.

Suggested Citation

  • Sikandar Khan, 2023. "A Modeling Study Focused on Improving the Aerodynamic Performance of a Small Horizontal Axis Wind Turbine," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5506-:d:1102998
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5506/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5506/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Xuejing & Zhu, Jianyang & Li, Zongjin & Sun, Guoxing, 2021. "Rotation improvement of vertical axis wind turbine by offsetting pitching angles and changing blade numbers," Energy, Elsevier, vol. 215(PB).
    2. Sikandar Khan & Yehia Abel Khulief & Abdullatif Al-Shuhail, 2019. "Mitigating climate change via CO2 sequestration into Biyadh reservoir: geomechanical modeling and caprock integrity," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(1), pages 23-52, January.
    3. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    4. Ebert, P.R. & Wood, D.H., 1997. "Observations of the starting behaviour of a small horizontalaxis wind turbine," Renewable Energy, Elsevier, vol. 12(3), pages 245-257.
    5. Morcos, V.H., 1994. "Aerodynamic performance analysis of horizontal axis wind turbines," Renewable Energy, Elsevier, vol. 4(5), pages 505-518.
    6. Md. Shafiul Alam & Tanzi Ahmed Chowdhury & Abhishak Dhar & Fahad Saleh Al-Ismail & M. S. H. Choudhury & Md Shafiullah & Md. Ismail Hossain & Md. Alamgir Hossain & Aasim Ullah & Syed Masiur Rahman, 2023. "Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments," Energies, MDPI, vol. 16(2), pages 1-31, January.
    7. Amina Bensalah & Georges Barakat & Yacine Amara, 2022. "Electrical Generators for Large Wind Turbine: Trends and Challenges," Energies, MDPI, vol. 15(18), pages 1-36, September.
    8. Hailay Kiros Kelele & Lars Frøyd & Mulu Bayray Kahsay & Torbjørn Kristian Nielsen, 2022. "Characterization of Aerodynamics of Small Wind Turbine Blade for Enhanced Performance and Low Cost of Energy," Energies, MDPI, vol. 15(21), pages 1-23, October.
    9. Akour, Salih N. & Al-Heymari, Mohammed & Ahmed, Talha & Khalil, Kamel Ali, 2018. "Experimental and theoretical investigation of micro wind turbine for low wind speed regions," Renewable Energy, Elsevier, vol. 116(PA), pages 215-223.
    10. Dario Maradin, 2021. "Advantages and Disadvantages of Renewable Energy Sources Utilization," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 176-183.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiwu Feng & Da Yang & Wenxue Du & Qiang Li, 2023. "In Situ Structural Health Monitoring of Full-Scale Wind Turbine Blades in Operation Based on Stereo Digital Image Correlation," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    2. Wenyan Li & Yuxuan Xiong & Guoliang Su & Zuyang Ye & Guowu Wang & Zhao Chen, 2023. "The Aerodynamic Performance of Horizontal Axis Wind Turbines under Rotation Condition," Sustainability, MDPI, vol. 15(16), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dallatu Abbas Umar & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Ammar Ahmed Alkahtani & Talal Yusaf, 2022. "Design and Optimization of a Small-Scale Horizontal Axis Wind Turbine Blade for Energy Harvesting at Low Wind Profile Areas," Energies, MDPI, vol. 15(9), pages 1-22, April.
    2. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    3. Muhammad Saif Ullah Khalid & David Wood & Arman Hemmati, 2022. "Self-Starting Characteristics and Flow-Induced Rotation of Single- and Dual-Stage Vertical-Axis Wind Turbines," Energies, MDPI, vol. 15(24), pages 1-19, December.
    4. Athanasios Ioannis Arvanitidis & Vivek Agarwal & Miltiadis Alamaniotis, 2023. "Nuclear-Driven Integrated Energy Systems: A State-of-the-Art Review," Energies, MDPI, vol. 16(11), pages 1-23, May.
    5. Kamal Jawher Khudaida & Diganta Bhusan Das, 2020. "A Numerical Analysis of the Effects of Supercritical CO 2 Injection on CO 2 Storage Capacities of Geological Formations," Clean Technol., MDPI, vol. 2(3), pages 1-32, September.
    6. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    7. Pourrajabian, Abolfazl & Nazmi Afshar, Peyman Amir & Ahmadizadeh, Mehdi & Wood, David, 2016. "Aero-structural design and optimization of a small wind turbine blade," Renewable Energy, Elsevier, vol. 87(P2), pages 837-848.
    8. Dario Maradin & Bojana Olgić Draženović & Saša Čegar, 2023. "The Efficiency of Offshore Wind Energy Companies in the European Countries: A DEA Approach," Energies, MDPI, vol. 16(9), pages 1-16, April.
    9. Olawale Fatoki, 2022. "Determinants of Intention to Purchase Photovoltaic Panel System: An Integration of Technology Acceptance Model and Theory of Planned Behaviour," International Journal of Energy Economics and Policy, Econjournals, vol. 12(3), pages 432-440, May.
    10. Ardaneh, Fatemeh & Abdolahifar, Abolfazl & Karimian, S.M.H., 2022. "Numerical analysis of the pitch angle effect on the performance improvement and flow characteristics of the 3-PB Darrieus vertical axis wind turbine," Energy, Elsevier, vol. 239(PD).
    11. Elgammi, Moutaz & Sant, Tonio & Alshaikh, Moftah, 2020. "Predicting the stochastic aerodynamic loads on blades of two yawed downwind hawts in uncontrolled conditions using a bem algorithm," Renewable Energy, Elsevier, vol. 146(C), pages 371-383.
    12. Taimoor Asim & Dharminder Singh & M. Salman Siddiqui & Don McGlinchey, 2022. "Effect of Stator Blades on the Startup Dynamics of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 15(21), pages 1-19, October.
    13. Celik, Yunus & Ingham, Derek & Ma, Lin & Pourkashanian, Mohamed, 2022. "Design and aerodynamic performance analyses of the self-starting H-type VAWT having J-shaped aerofoils considering various design parameters using CFD," Energy, Elsevier, vol. 251(C).
    14. Rashid Mohamed Mkemai & Gong Bin, 0. "A modeling and numerical simulation study of enhanced CO2 sequestration into deep saline formation: a strategy towards climate change mitigation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 901-927.
    15. Pourrajabian, Abolfazl & Dehghan, Maziar & Javed, Adeel & Wood, David, 2019. "Choosing an appropriate timber for a small wind turbine blade: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 1-8.
    16. Zhentao Xu & Junjie Ma & Yousong Gao & Yong Li & Haifeng Yu & Lu Wang, 2023. "Inertia Identification and Analysis for High-Power-Electronic-Penetrated Power System Based on Measurement Data," Energies, MDPI, vol. 16(10), pages 1-19, May.
    17. Matheus Schramm Dall’Asta & Telles Brunelli Lazzarin, 2023. "Small-Signal Modeling and Stability Analysis of a Grid-Following Inverter with Inertia Emulation," Energies, MDPI, vol. 16(16), pages 1-28, August.
    18. Shahid Aziz & Abdullah Khan & Imran Shah & Tariq Amin Khan & Yasir Ali & Muhammad Umer Sohail & Badar Rashid & Dong Won Jung, 2022. "Computational Fluid Dynamics and Experimental Analysis of a Wind Turbine Blade’s Frontal Section with and without Arrays of Dimpled Structures," Energies, MDPI, vol. 15(19), pages 1-15, September.
    19. Ke Song & Huiting Huan & Yuchi Kang, 2022. "Aerodynamic Performance and Wake Characteristics Analysis of Archimedes Spiral Wind Turbine Rotors with Different Blade Angle," Energies, MDPI, vol. 16(1), pages 1-18, December.
    20. Sutrisno & Sigit Iswahyudi & Setyawan Bekti Wibowo, 2018. "Dimensional Analysis of Power Prediction of a Real-Scale Wind Turbine Based on Wind-Tunnel Torque Measurement of Small-Scaled Models," Energies, MDPI, vol. 11(9), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5506-:d:1102998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.