IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13783-d1240811.html
   My bibliography  Save this article

In Situ Structural Health Monitoring of Full-Scale Wind Turbine Blades in Operation Based on Stereo Digital Image Correlation

Author

Listed:
  • Weiwu Feng

    (College of Civil Engineering and Architecture, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China)

  • Da Yang

    (Sany Heavy Industry Co., Ltd., Changsha 410100, China)

  • Wenxue Du

    (College of Civil Engineering and Architecture, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China)

  • Qiang Li

    (College of Civil Engineering and Architecture, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China)

Abstract

Structural health monitoring (SHM) and the operational condition assessment of blades are greatly important for the operation of wind turbines that are at a high risk of disease in service for more than 5 years. Since certain types of blade faults only occur during wind turbine operation, it is more significant to perform in situ SHM of rotating full-scale blades than existing SHM of small-scale blades or static testing of full-scale blades. Considering that these blades are usually not prefabricated with relevant sensors, this study performed SHM and condition assessment of full-scale blades in operation with stereo digital image correlation. A self-calibration method adapted to the outdoors with a large field of view was introduced based on the speckled patterns. To accurately obtain the in- and off-plane deformation, a new reference frame is constructed at the center of the rotation of the blades. The 3D displacements of the points of interest (POIs) on the blade of a 2 MW wind turbine were characterized. Furthermore, the frequency spectrum of the measured 3D displacements of the blades was compared with the blades with the faults. The results showed that the introduced technique is a convenient and nondestructive technique that enables SHM of full-scale wind turbine blades in operation.

Suggested Citation

  • Weiwu Feng & Da Yang & Wenxue Du & Qiang Li, 2023. "In Situ Structural Health Monitoring of Full-Scale Wind Turbine Blades in Operation Based on Stereo Digital Image Correlation," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13783-:d:1240811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13783/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13783/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sikandar Khan, 2023. "A Modeling Study Focused on Improving the Aerodynamic Performance of a Small Horizontal Axis Wind Turbine," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    2. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Condition monitoring of wind turbine blades based on self-supervised health representation learning: A conducive technique to effective and reliable utilization of wind energy," Applied Energy, Elsevier, vol. 313(C).
    3. Khazaee, Meghdad & Derian, Pierre & Mouraud, Anthony, 2022. "A comprehensive study on Structural Health Monitoring (SHM) of wind turbine blades by instrumenting tower using machine learning methods," Renewable Energy, Elsevier, vol. 199(C), pages 1568-1579.
    4. Bingchuan Sun & Hongmei Cui & Zhongyang Li & Teng Fan & Yonghao Li & Lida Luo & Yong Zhang, 2022. "Experimental Study on the Noise Evolution of a Horizontal Axis Icing Wind Turbine Based on a Small Microphone Array," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    5. Wang, Zixuan & Qin, Bo & Sun, Haiyue & Zhang, Jian & Butala, Mark D. & Demartino, Cristoforo & Peng, Peng & Wang, Hongwei, 2023. "An imbalanced semi-supervised wind turbine blade icing detection method based on contrastive learning," Renewable Energy, Elsevier, vol. 212(C), pages 251-262.
    6. Zheng Liu & Xin Liu & Kan Wang & Zhongwei Liang & José A.F.O. Correia & Abílio M.P. De Jesus, 2019. "GA-BP Neural Network-Based Strain Prediction in Full-Scale Static Testing of Wind Turbine Blades," Energies, MDPI, vol. 12(6), pages 1-15, March.
    7. Han Peng & Songyin Li & Linjian Shangguan & Yisa Fan & Hai Zhang, 2023. "Analysis of Wind Turbine Equipment Failure and Intelligent Operation and Maintenance Research," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    8. Chandrasekhar, Kartik & Stevanovic, Nevena & Cross, Elizabeth J. & Dervilis, Nikolaos & Worden, Keith, 2021. "Damage detection in operational wind turbine blades using a new approach based on machine learning," Renewable Energy, Elsevier, vol. 168(C), pages 1249-1264.
    9. Luo, Kai & Chen, Liang & Liang, Wei, 2022. "Structural health monitoring of carbon fiber reinforced polymer composite laminates for offshore wind turbine blades based on dual maximum correlation coefficient method," Renewable Energy, Elsevier, vol. 201(P1), pages 1163-1175.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paweł Knes & Phong B. Dao, 2024. "Machine Learning and Cointegration for Wind Turbine Monitoring and Fault Detection: From a Comparative Study to a Combined Approach," Energies, MDPI, vol. 17(20), pages 1-21, October.
    2. Sun, Shilin & Li, Qi & Hu, Wenyang & Liang, Zhongchao & Wang, Tianyang & Chu, Fulei, 2023. "Wind turbine blade breakage detection based on environment-adapted contrastive learning," Renewable Energy, Elsevier, vol. 219(P2).
    3. Xu, Xuefang & Li, Bo & Qiao, Zijian & Shi, Peiming & Shao, Huaishuang & Li, Ruixiong, 2023. "Caputo-Fabrizio fractional order derivative stochastic resonance enhanced by ADOF and its application in fault diagnosis of wind turbine drivetrain," Renewable Energy, Elsevier, vol. 219(P1).
    4. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    5. Luo, Kai & Chen, Liang & Liang, Wei, 2022. "Structural health monitoring of carbon fiber reinforced polymer composite laminates for offshore wind turbine blades based on dual maximum correlation coefficient method," Renewable Energy, Elsevier, vol. 201(P1), pages 1163-1175.
    6. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    7. Wojciech Lewicki & Mariusz Niekurzak & Adam Koniuszy, 2025. "Evaluation of the Possibility of Using a Home Wind Installation as Part of the Operation of Hybrid Systems—A Selected Case Study of Investment Profitability Analysis," Energies, MDPI, vol. 18(8), pages 1-24, April.
    8. Yanfei Liu & Wentao Wang & Wenjun Wang & Chengbo Yu & Bowen Mao & Dongfang Shang & Yucong Duan, 2023. "Purpose-Driven Evaluation of Operation and Maintenance Efficiency and Safety Based on DIKWP," Sustainability, MDPI, vol. 15(17), pages 1-22, August.
    9. Dao, Phong B. & Barszcz, Tomasz & Staszewski, Wieslaw J., 2024. "Anomaly detection of wind turbines based on stationarity analysis of SCADA data," Renewable Energy, Elsevier, vol. 232(C).
    10. Sun, Min & Peng, Liangchang & Lei, Hongshuai & Zhang, Jialei & Zhang, Zheng & Chen, Qiang & Zhang, Guang & Li, Jiquan, 2025. "A novel small-scale H-type Darrieus vertical axis wind turbine manufactured of carbon fiber reinforced composites," Renewable Energy, Elsevier, vol. 238(C).
    11. Xiaoxun, Zhu & Xinyu, Hang & Xiaoxia, Gao & Xing, Yang & Zixu, Xu & Yu, Wang & Huaxin, Liu, 2022. "Research on crack detection method of wind turbine blade based on a deep learning method," Applied Energy, Elsevier, vol. 328(C).
    12. Dimitris Al. Katsaprakakis & Nikos Papadakis & Ioannis Ntintakis, 2021. "A Comprehensive Analysis of Wind Turbine Blade Damage," Energies, MDPI, vol. 14(18), pages 1-31, September.
    13. Jinhua Zhang & Hui Li & Peng Cheng & Jie Yan, 2024. "Interpretable Wind Power Short-Term Power Prediction Model Using Deep Graph Attention Network," Energies, MDPI, vol. 17(2), pages 1-16, January.
    14. Wang, Anqi & Pei, Yan & Zhu, Yunyi & Qian, Zheng, 2023. "Wind turbine fault detection and identification through self-attention-based mechanism embedded with a multivariable query pattern," Renewable Energy, Elsevier, vol. 211(C), pages 918-937.
    15. He, Ruiyang & Yang, Hongxing & Sun, Shilin & Lu, Lin & Sun, Haiying & Gao, Xiaoxia, 2022. "A machine learning-based fatigue loads and power prediction method for wind turbines under yaw control," Applied Energy, Elsevier, vol. 326(C).
    16. Wanqian Yang & Mingming Zhang & Jincheng Yu, 2025. "Self-Supervised Condition Monitoring for Wind Turbine Gearboxes Based on Adaptive Feature Selection and Contrastive Residual Graph Neural Network," Energies, MDPI, vol. 18(20), pages 1-31, October.
    17. Tian, Runze & Kou, Peng & Zhang, Yuanhang & Mei, Mingyang & Zhang, Zhihao & Liang, Deliang, 2024. "Residual-connected physics-informed neural network for anti-noise wind field reconstruction," Applied Energy, Elsevier, vol. 357(C).
    18. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
    19. Ye, Feng & Ezzat, Ahmed Aziz, 2024. "Icing detection and prediction for wind turbines using multivariate sensor data and machine learning," Renewable Energy, Elsevier, vol. 231(C).
    20. Lorin Jenkel & Stefan Jonas & Angela Meyer, 2023. "Privacy-Preserving Fleet-Wide Learning of Wind Turbine Conditions with Federated Learning," Energies, MDPI, vol. 16(17), pages 1-29, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13783-:d:1240811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.