IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p4805-d1091347.html
   My bibliography  Save this article

Study on the Spatial–Temporal Pattern Evolution and Carbon Emission Reduction Effect of Industry–City Integration in the Yellow River Basin

Author

Listed:
  • Zhengyun Jiang

    (Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Yun Feng

    (College of Business, The University of New South Wales, Sydney, NSW 2052, Australia)

  • Jinping Song

    (Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Chengzhen Song

    (Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Xiaodi Zhao

    (Glorious Sun School of Business and Management, Donghua University, Shanghai 200050, China)

  • Chi Zhang

    (College of Business, Zhejiang University City College, Hangzhou 310015, China)

Abstract

The coordinated promotion of industry–city integration and carbon emission reduction is of great significance to the construction of a green economic system and deep participation in global environmental governance. Based on the overall framework of the “production–life–ecology” system, the theoretical mechanism of the impact of industry–city integration on carbon emissions is systematically clarified. Taking the Yellow River basin as a sample, the spatiotemporal heterogeneity of the effect of industry–city integration on carbon emissions is empirically tested by using the methods of the dispersion coefficient coordination function, standard deviation ellipse and STIRPAT model. The results show the following: (1) The coordinated integration of industry and city has significant carbon emission reduction effects, thus indicating that industry–city integration and carbon neutralization can achieve both, and that the conclusion is still valid after endogenous treatment and a series of robustness tests. (2) The development of an export-oriented economy and informatization can significantly promote carbon emission reduction. The process of economic development, infrastructure construction and population quality improvement may aggravate regional carbon emissions in the short term. (3) Further analysis shows that the carbon emission reduction effect of industry–city integration has significant spatial heterogeneity, especially in the upper and lower reaches of the Yellow River and regions with moderate carbon emission intensity. Scientific and technological innovation and environmental regulation play a positive role in regulating the carbon emission reduction effect of industry–city integration.

Suggested Citation

  • Zhengyun Jiang & Yun Feng & Jinping Song & Chengzhen Song & Xiaodi Zhao & Chi Zhang, 2023. "Study on the Spatial–Temporal Pattern Evolution and Carbon Emission Reduction Effect of Industry–City Integration in the Yellow River Basin," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:4805-:d:1091347
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/4805/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/4805/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Baldwin & W. Brown, 2004. "Regional manufacturing employment volatility in Canada: The effects of specialisation and trade," Papers in Regional Science, Springer;Regional Science Association International, vol. 83(3), pages 519-541, July.
    2. Wang, Ping & Wu, Wanshui & Zhu, Bangzhu & Wei, Yiming, 2013. "Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China," Applied Energy, Elsevier, vol. 106(C), pages 65-71.
    3. Richard York & Eugene A. Rosa & Thomas Dietz, 2002. "Bridging Environmental Science with Environmental Policy: Plasticity of Population, Affluence, and Technology," Social Science Quarterly, Southwestern Social Science Association, vol. 83(1), pages 18-34, March.
    4. Luping Shi & Zhongyao Cai & Xuhui Ding & Rong Di & Qianqian Xiao, 2020. "What Factors Affect the Level of Green Urbanization in the Yellow River Basin in the Context of New-Type Urbanization?," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zixun Guo & Zhimei Gao & Wenbin Zhang, 2023. "Accounting and Decomposition of Energy Footprint: Evidence from 28 Sectors in China," Sustainability, MDPI, vol. 15(17), pages 1-24, September.
    2. Kunpeng Ai & Ning Xu, 2023. "Does Regional Integration Improve Carbon Emission Performance?—A Quasi-Natural Experiment on Regional Integration in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 15(20), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinxuan Cheng & Longfei Fan & Jiachen Wang, 2018. "Can Energy Structure Optimization, Industrial Structure Changes, Technological Improvements, and Central and Local Governance Effectively Reduce Atmospheric Pollution in the Beijing–Tianjin–Hebei Area," Sustainability, MDPI, vol. 10(3), pages 1-16, February.
    2. Kong-Qing Li & Ran Lu & Rui-Wen Chu & Dou-Dou Ma & Li-Qun Zhu, 2018. "Trends and Driving Forces of Carbon Emissions from Energy Consumption: A Case Study of Nanjing, China," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
    3. Yu Zhang & Wenliang Geng & Pengyan Zhang & Erling Li & Tianqi Rong & Ying Liu & Jingwen Shao & Hao Chang, 2020. "Dynamic Changes, Spatiotemporal Differences and Factors Influencing the Urban Eco-Efficiency in the Lower Reaches of the Yellow River," IJERPH, MDPI, vol. 17(20), pages 1-19, October.
    4. Yike Xu & Guiliang Tian & Shuwen Xu & Qing Xia, 2023. "Analysis of Virtual Water Flow Patterns and Their Drivers in the Yellow River Basin," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    5. Yu, Xiang & Chen, Hongbo & Wang, Bo & Wang, Ran & Shan, Yuli, 2018. "Driving forces of CO2 emissions and mitigation strategies of China’s National low carbon pilot industrial parks," Applied Energy, Elsevier, vol. 212(C), pages 1553-1562.
    6. Wang, Shaojian & Fang, Chuanglin & Wang, Yang, 2016. "Spatiotemporal variations of energy-related CO2 emissions in China and its influencing factors: An empirical analysis based on provincial panel data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 505-515.
    7. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    8. Robert B. Penfold, 2006. "Covariance Risk and Employment Growth in Canadian Cities," Growth and Change, Wiley Blackwell, vol. 37(1), pages 60-81, March.
    9. Ling Xiong & Shaozhou Qi, 2018. "Financial Development And Carbon Emissions In Chinese Provinces: A Spatial Panel Data Analysis," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 447-464, March.
    10. Jinzhao Song & Qing Feng & Xiaoping Wang & Hanliang Fu & Wei Jiang & Baiyu Chen, 2018. "Spatial Association and Effect Evaluation of CO 2 Emission in the Chengdu-Chongqing Urban Agglomeration: Quantitative Evidence from Social Network Analysis," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    11. Roula Inglesi-Lotz & Luis Diez del Corral Morales, 2017. "The Effect of Education on a Country’s Energy Consumption: Evidence from Developed and Developing Countries," Working Papers 201733, University of Pretoria, Department of Economics.
    12. Kui Liu & Jian Wang & Xiang Kang & Jingming Liu & Zheyi Xia & Kai Du & Xuexin Zhu, 2022. "Spatio-Temporal Analysis of Population-Land-Economic Urbanization and Its Impact on Urban Carbon Emissions in Shandong Province, China," Land, MDPI, vol. 11(2), pages 1-20, February.
    13. Dong Jichang & He Jing & Li Xiuting & Mou Xindi & Dong Zhi, 2020. "The Effect of Industrial Structure Change on Carbon Dioxide Emissions: A Cross-Country Panel Analysis," Journal of Systems Science and Information, De Gruyter, vol. 8(1), pages 1-16, February.
    14. Huaide Wen & Jun Dai, 2021. "The Change of Sources of Growth and Sustainable Development in China: Based on the Extended EKC Explanation," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    15. Magazzino, Cosimo & Drago, Carlo & Schneider, Nicolas, 2023. "Evidence of supply security and sustainability challenges in Nigeria’s power sector," Utilities Policy, Elsevier, vol. 82(C).
    16. Gang Xu & Tianyi Zeng & Hong Jin & Cong Xu & Ziqi Zhang, 2023. "Spatio-Temporal Variations and Influencing Factors of Country-Level Carbon Emissions for Northeast China Based on VIIRS Nighttime Lighting Data," IJERPH, MDPI, vol. 20(1), pages 1-17, January.
    17. Jia, Junsong & Deng, Hongbing & Duan, Jing & Zhao, Jingzhu, 2009. "Analysis of the major drivers of the ecological footprint using the STIRPAT model and the PLS method--A case study in Henan Province, China," Ecological Economics, Elsevier, vol. 68(11), pages 2818-2824, September.
    18. Elia, Stefano & Maggi, Elena & Mariotti, Ilaria, 2011. "Does the transport industry gain from manufacturing internationalization? An empirical investigation on the Italian regions," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 49, pages 53-74.
    19. Yu Li & Ji Zheng & Fei Li & Xueting Jin & Chen Xu, 2017. "Assessment of municipal infrastructure development and its critical influencing factors in urban China: A FA and STIRPAT approach," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-14, August.
    20. Yueyue Rong & Junsong Jia & Min Ju & Chundi Chen & Yangming Zhou & Yexi Zhong, 2021. "Multi-Perspective Analysis of Household Carbon Dioxide Emissions from Direct Energy Consumption by the Methods of Logarithmic Mean Divisia Index and σ Convergence in Central China," Sustainability, MDPI, vol. 13(16), pages 1-28, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:4805-:d:1091347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.