IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4170-d1080360.html
   My bibliography  Save this article

Carbon Footprint Analysis of Sewage Sludge Thermochemical Conversion Technologies

Author

Listed:
  • Liping Li

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
    Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, China)

  • Guiyue Du

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
    Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, China)

  • Beibei Yan

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
    Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, China)

  • Yuan Wang

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
    Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, China)

  • Yingxin Zhao

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
    Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, China)

  • Jianming Su

    (Tianjin Huabo Water Affairs Co., Ltd., Tianjin 300301, China)

  • Hongyi Li

    (Tianjin Huabo Water Affairs Co., Ltd., Tianjin 300301, China)

  • Yanfeng Du

    (Tianjin Huabo Water Affairs Co., Ltd., Tianjin 300301, China)

  • Yunan Sun

    (School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China)

  • Guanyi Chen

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
    Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, China
    School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China)

  • Wanqing Li

    (School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China)

  • Thomas Helmer Pedersen

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

Abstract

Thermochemical conversion technology for sewage sludge (SS) management has obvious advantages compared to traditional technologies, such as considerable volume reduction, effective pathogen elimination, and potential fuel production. However, few researchers conducted comparative research on the greenhouse gas (GHG) emission performances of these technologies. This paper evaluates the lifecycle carbon footprints of three SS thermochemical conversion technologies, including hydrothermal liquefaction (HTL) (Case 1), pyrolysis (Case 2), and incineration (Case 3) with software OpenLCA and Ecoinvent database. The results show that Case 1 has the smallest carbon footprint (172.50 kg CO 2eq /t SS), which indicates the HTL process has the best GHG emission reduction potential compared to other SS disposal routes. The biggest contributor to the carbon footprint of SS thermochemical conversion technologies is indirect emissions related to energy consumption. So the energy consumption ratio (ECR) of the three cases is calculated to assess the energy consumption performances. From the perspective of energy conversion, Case 1 shows the best performance with an ECR of 0.34. In addition, element balance analysis is carried out to deeply evaluate the carbon reduction performance of the three cases. This study fills the knowledge gap regarding the carbon footprints for SS thermochemical conversion technologies and provides a reference for future technology selection and policymaking against climate change in the SS management sector.

Suggested Citation

  • Liping Li & Guiyue Du & Beibei Yan & Yuan Wang & Yingxin Zhao & Jianming Su & Hongyi Li & Yanfeng Du & Yunan Sun & Guanyi Chen & Wanqing Li & Thomas Helmer Pedersen, 2023. "Carbon Footprint Analysis of Sewage Sludge Thermochemical Conversion Technologies," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4170-:d:1080360
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4170/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4170/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Huan & Jin, Chang & Zhang, Zhanying & O'Hara, Ian & Mundree, Sagadevan, 2017. "Environmental and economic life cycle assessment of energy recovery from sewage sludge through different anaerobic digestion pathways," Energy, Elsevier, vol. 126(C), pages 649-657.
    2. Arianna Callegari & Andrea Giuseppe Capodaglio, 2018. "Properties and Beneficial Uses of (Bio)Chars, with Special Attention to Products from Sewage Sludge Pyrolysis," Resources, MDPI, vol. 7(1), pages 1-22, March.
    3. Joeri Rogelj & Michel den Elzen & Niklas Höhne & Taryn Fransen & Hanna Fekete & Harald Winkler & Roberto Schaeffer & Fu Sha & Keywan Riahi & Malte Meinshausen, 2016. "Paris Agreement climate proposals need a boost to keep warming well below 2 °C," Nature, Nature, vol. 534(7609), pages 631-639, June.
    4. Lin, Yi-Pin & Wang, Wen-Hsian & Pan, Shu-Yuan & Ho, Chang-Ching & Hou, Chin-Jen & Chiang, Pen-Chi, 2016. "Environmental impacts and benefits of organic Rankine cycle power generation technology and wood pellet fuel exemplified by electric arc furnace steel industry," Applied Energy, Elsevier, vol. 183(C), pages 369-379.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cagri Un, 2024. "Enhancing Sewage Sludge Treatment with Hydrothermal Processing: A Case Study of Adana City," Sustainability, MDPI, vol. 16(10), pages 1-19, May.
    2. Junran Liu & Shuyi Liu & Lisha Zhu & Lirong Sun & Ying Zhang & Xin Li & Laili Wang, 2023. "Carbon Neutrality Potential of Textile Products Made from Plant-Derived Fibers," Sustainability, MDPI, vol. 15(9), pages 1-11, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bingzheng & Lu, Xiaofei & Zhang, Cancan & Wang, Hongsheng, 2022. "Cascade and hybrid processes for co-generating solar-based fuels and electricity via combining spectral splitting technology and membrane reactor," Renewable Energy, Elsevier, vol. 196(C), pages 782-799.
    2. Sapkota, Krishna & Gemechu, Eskinder & Oni, Abayomi Olufemi & Ma, Linwei & Kumar, Amit, 2022. "Greenhouse gas emissions from Canadian oil sands supply chains to China," Energy, Elsevier, vol. 251(C).
    3. Babras Khan & Man-Hoe Kim, 2022. "Energy and Exergy Analyses of a Novel Combined Heat and Power System Operated by a Recuperative Organic Rankine Cycle Integrated with a Water Heating System," Energies, MDPI, vol. 15(18), pages 1-19, September.
    4. Piris-Cabezas, Pedro & Lubowski, Ruben N. & Leslie, Gabriela, 2023. "Estimating the potential of international carbon markets to increase global climate ambition," World Development, Elsevier, vol. 167(C).
    5. Alt, Marius & Gallier, Carlo & Kesternich, Martin & Sturm, Bodo, 2023. "Collective minimum contributions to counteract the ratchet effect in the voluntary provision of public goods," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    6. Rong Li & Brent Sohngen & Xiaohui Tian, 2022. "Efficiency of forest carbon policies at intensive and extensive margins," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1243-1267, August.
    7. Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
    8. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    9. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    10. Heleen L. Soest & Lara Aleluia Reis & Luiz Bernardo Baptista & Christoph Bertram & Jacques Després & Laurent Drouet & Michel Elzen & Panagiotis Fragkos & Oliver Fricko & Shinichiro Fujimori & Neil Gra, 2021. "Global roll-out of comprehensive policy measures may aid in bridging emissions gap," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Nancy Diaz-Elsayed & Jiayi Hua & Nader Rezaei & Qiong Zhang, 2023. "A Decision Framework for Designing Sustainable Wastewater-Based Resource Recovery Schemes," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    12. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    13. Yang, Shenyao & Hu, Shilai & Qi, Zhilin & Qi, Huiqing & Zhao, Guanqun & Li, Jiqiang & Yan, Wende & Huang, Xiaoliang, 2024. "Experiment and prediction for dynamic storage capacity of underground gas storage rebuilt from hydrocarbon reservoir," Renewable Energy, Elsevier, vol. 222(C).
    14. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    15. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    16. Ana Luiza Carvalho Ferrer & Antonio Márcio Tavares Thomé, 2023. "Carbon Emissions in Transportation: A Synthesis Framework," Sustainability, MDPI, vol. 15(11), pages 1-28, May.
    17. Nikolaos Margaritis & Christos Evaggelou & Panagiotis Grammelis & Roberto Arévalo & Haris Yiannoulakis & Polykarpos Papageorgiou, 2023. "Application of Flexible Tools in Magnesia Sector: The Case of Grecian Magnesite," Sustainability, MDPI, vol. 15(16), pages 1-30, August.
    18. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2018. "Future Trajectories of Renewable Energy Consumption in the European Union," Resources, MDPI, vol. 7(1), pages 1-13, February.
    19. Oppon, Eunice & Richter, Justin S. & Koh, S.C. Lenny & Nabayiga, Hellen, 2023. "Macro-level economic and environmental sustainability of negative emission technologies; Case study of crushed silicate production for enhanced weathering," Ecological Economics, Elsevier, vol. 204(PA).
    20. Di Maria, Francesco & Sisani, Federico & Lasagni, Marzio & Borges, Marisa Soares & Gonzales, Thiago H., 2018. "Replacement of energy crops with bio-waste in existing anaerobic digestion plants: An energetic and environmental analysis," Energy, Elsevier, vol. 152(C), pages 202-213.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4170-:d:1080360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.