IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p900-d1024505.html
   My bibliography  Save this article

Institutional Trust and Cognitive Motivation toward Water Conservation in the Face of an Environmental Disaster

Author

Listed:
  • Peyman Arjomandi A.

    (Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, 40136 Bologna, Italy
    Cooperation and Transformative Governance Group, International Institute for Applied Systems Analysis, 2361 Laxenburg, Austria)

  • Masoud Yazdanpanah

    (Cooperation and Transformative Governance Group, International Institute for Applied Systems Analysis, 2361 Laxenburg, Austria
    Department of Agricultural Extension and Education, Agriculture Sciences and Natural Resources University of Khuzestan, Mollasani 6341773637, Iran
    Department of Agricultural Education and Communication, University of Florida, Gainesville, FL 32611, USA)

  • Akbar Shirzad

    (Faculty of Civil Engineering, Urmia University of Technology, Urmia 5716617165, Iran)

  • Nadejda Komendantova

    (Cooperation and Transformative Governance Group, International Institute for Applied Systems Analysis, 2361 Laxenburg, Austria)

  • Erfan Kameli

    (Faculty of Civil Engineering, Urmia University of Technology, Urmia 5716617165, Iran)

  • Mahdi Hosseinzadeh

    (Faculty of Civil Engineering, Urmia University of Technology, Urmia 5716617165, Iran)

  • Erfan Razavi

    (Faculty of Civil Engineering, Urmia University of Technology, Urmia 5716617165, Iran)

Abstract

The agricultural sector in general, and in Iran in particular, is a major consumer of water and now finds itself under significant pressure due to water deficiency. This study used the Protection Motivation Theory to detect reasons for the imprudent consumption of water in Iran and to further its conservation. The Theory was extended for particular application to a seriously affected water basin, the Urmia Lake Basin in Northwest Iran. The factors governing water-saving intention among farmers in the Basin were investigated. Three hundred farmers were selected through a multi-stage, clustered, random sampling method. The results of structural equation modeling illustrated that while the original model variables accounted for 58% of the variance in water-saving intention, this rate increased to 63% in the extended model when institutional trust was used as a variable. Whereas response efficacy showed itself to be the strongest determinant of water-saving intention, all factors except perceived severity were significant in both models. Furthermore, the results of a multi-group analysis revealed that the intention to adopt water conservation measures is commensurate with the distance from the water resource and proximity to the (drying) lake. The findings of the study are expected to provide important information for policymakers looking to tailor policies to work in extreme water deficiency cases like the Urmia Lake Basin.

Suggested Citation

  • Peyman Arjomandi A. & Masoud Yazdanpanah & Akbar Shirzad & Nadejda Komendantova & Erfan Kameli & Mahdi Hosseinzadeh & Erfan Razavi, 2023. "Institutional Trust and Cognitive Motivation toward Water Conservation in the Face of an Environmental Disaster," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:900-:d:1024505
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/900/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/900/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Dettori & Antonio Azara & Erika Loria & Andrea Piana & Maria Dolores Masia & Alessandra Palmieri & Andrea Cossu & Paolo Castiglia, 2019. "Population Distrust of Drinking Water Safety. Community Outrage Analysis, Prediction and Management," IJERPH, MDPI, vol. 16(6), pages 1-10, March.
    2. Jeannie Sowers & Avner Vengosh & Erika Weinthal, 2011. "Climate change, water resources, and the politics of adaptation in the Middle East and North Africa," Climatic Change, Springer, vol. 104(3), pages 599-627, February.
    3. Michael Siegrist & George Cvetkovich & Claudia Roth, 2000. "Salient Value Similarity, Social Trust, and Risk/Benefit Perception," Risk Analysis, John Wiley & Sons, vol. 20(3), pages 353-362, June.
    4. Rasoul Maleki & Mehdi Nooripoor & Hossein Azadi & Philippe Lebailly, 2018. "Vulnerability Assessment of Rural Households to Urmia Lake Drying (the Case of Shabestar Region)," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    5. Douglas Paton, 2008. "Risk communication and natural hazard mitigation: how trust influences its effectiveness," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 8(1/2), pages 2-16.
    6. Torsten Grothmann & Fritz Reusswig, 2006. "People at Risk of Flooding: Why Some Residents Take Precautionary Action While Others Do Not," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 38(1), pages 101-120, May.
    7. Consuelo Varela‐Ortega & José M. Sumpsi & Alberto Garrido & María Blanco & Eva Iglesias, 1998. "Water pricing policies, public decision making and farmers' response: implications for water policy," Agricultural Economics, International Association of Agricultural Economists, vol. 19(1-2), pages 193-202, September.
    8. Michael W. Slimak & Thomas Dietz, 2006. "Personal Values, Beliefs, and Ecological Risk Perception," Risk Analysis, John Wiley & Sons, vol. 26(6), pages 1689-1705, December.
    9. Yadu Pokhrel & Farshid Felfelani & Yusuke Satoh & Julien Boulange & Peter Burek & Anne Gädeke & Dieter Gerten & Simon N. Gosling & Manolis Grillakis & Lukas Gudmundsson & Naota Hanasaki & Hyungjun Kim, 2021. "Global terrestrial water storage and drought severity under climate change," Nature Climate Change, Nature, vol. 11(3), pages 226-233, March.
    10. Olmstead, Sheila M., 2014. "Climate change adaptation and water resource management: A review of the literature," Energy Economics, Elsevier, vol. 46(C), pages 500-509.
    11. Farideh Delavari Edalat & M. Reza Abdi, 2018. "Water Management in Developing Countries: The Example of Iran," International Series in Operations Research & Management Science, in: Adaptive Water Management, chapter 0, pages 37-53, Springer.
    12. Iglesias, Ana & Garrote, Luis, 2015. "Adaptation strategies for agricultural water management under climate change in Europe," Agricultural Water Management, Elsevier, vol. 155(C), pages 113-124.
    13. Varela-Ortega, Consuelo & M. Sumpsi, Jose & Garrido, Alberto & Blanco, Maria & Iglesias, Eva, 1998. "Water pricing policies, public decision making and farmers' response: implications for water policy," Agricultural Economics, Blackwell, vol. 19(1-2), pages 193-202, September.
    14. Pakmehr, Sedighe & Yazdanpanah, Masoud & Baradaran, Masoud, 2020. "How collective efficacy makes a difference in responses to water shortage due to climate change in southwest Iran," Land Use Policy, Elsevier, vol. 99(C).
    15. Farideh Delavari Edalat & M. Reza Abdi, 2018. "Concept and Application of Adaptive Water Management," International Series in Operations Research & Management Science, in: Adaptive Water Management, chapter 0, pages 21-34, Springer.
    16. Elmira Hassanzadeh & Mahdi Zarghami & Yousef Hassanzadeh, 2012. "Determining the Main Factors in Declining the Urmia Lake Level by Using System Dynamics Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 129-145, January.
    17. Nazari, Bijan & Liaghat, Abdolmajid & Akbari, Mohammad Reza & Keshavarz, Marzieh, 2018. "Irrigation water management in Iran: Implications for water use efficiency improvement," Agricultural Water Management, Elsevier, vol. 208(C), pages 7-18.
    18. Farideh Delavari Edalat & M. Reza Abdi, 2018. "Adaptive Water Management," International Series in Operations Research and Management Science, Springer, number 978-3-319-64143-0, September.
    19. Zobeidi, Tahereh & Yaghoubi, Jafar & Yazdanpanah, Masoud, 2022. "Farmers’ incremental adaptation to water scarcity: An application of the model of private proactive adaptation to climate change (MPPACC)," Agricultural Water Management, Elsevier, vol. 264(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pakmehr, Sedighe & Yazdanpanah, Masoud & Baradaran, Masoud, 2020. "How collective efficacy makes a difference in responses to water shortage due to climate change in southwest Iran," Land Use Policy, Elsevier, vol. 99(C).
    2. Sedighe Pakmehr & Masoud Yazdanpanah & Masoud Baradaran, 2021. "Explaining farmers’ response to climate change-induced water stress through cognitive theory of stress: an Iranian perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5776-5793, April.
    3. Bader Alhafi Alotaibi & Azhar Abbas & Raza Ullah & Roshan K. Nayak & Muhammad I. Azeem & Hazem S. Kassem, 2021. "Climate Change Concerns of Saudi Arabian Farmers: The Drivers and Their Role in Perceived Capacity Building Needs for Adaptation," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    4. Markose Chekol Zewdie & Michele Moretti & Daregot Berihun Tenessa & Zemen Ayalew Ayele & Jan Nyssen & Enyew Adgo Tsegaye & Amare Sewnet Minale & Steven Van Passel, 2021. "Agricultural Technical Efficiency of Smallholder Farmers in Ethiopia: A Stochastic Frontier Approach," Land, MDPI, vol. 10(3), pages 1-17, March.
    5. Nicolás Bronfman & Pamela Cisternas & Esperanza López-Vázquez & Luis Cifuentes, 2016. "Trust and risk perception of natural hazards: implications for risk preparedness in Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 307-327, March.
    6. Zamani, Omid & Azadi, Hossein & Mortazavi, Seyed Abolghasem & Balali, Hamid & Moghaddam, Saghi Movahhed & Jurik, Lubos, 2021. "The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Prakashan Veettil & Stijn Speelman & Guido Huylenbroeck, 2013. "Estimating the Impact of Water Pricing on Water Use Efficiency in Semi-arid Cropping System: An Application of Probabilistically Constrained Nonparametric Efficiency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 55-73, January.
    8. Christian Franco-Crespo & Jose Maria Sumpsi Viñas, 2017. "The Impact of Pricing Policies on Irrigation Water for Agro-Food Farms in Ecuador," Sustainability, MDPI, vol. 9(9), pages 1-18, August.
    9. Sarah Wheeler & Henning Bjornlund & Martin Shanahan & Alec Zuo, 2008. "Price elasticity of water allocations demand in the Goulburn-Murray Irrigation District ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(1), pages 37-55, March.
    10. Gomez-Limon, Jose A. & Riesgo, Laura, 2004. "Irrigation water pricing: differential impacts on irrigated farms," Agricultural Economics, Blackwell, vol. 31(1), pages 47-66, July.
    11. Kanchanaroek, Yingluck & Aslam, Uzma, 2017. "Assessing Farmers’ Preferences To Participate In Agri-environment Policies In Thailand," 2017 International Congress, August 28-September 1, 2017, Parma, Italy 260888, European Association of Agricultural Economists.
    12. Bazzani, Guido Maria & di Pasquale, S. & Gallerani, Vittorio & Viaggi, Davide, 2002. "Water Policy And The Sustainability Of Irrigated Systems In Italy," Working Papers 14401, University of Minnesota, Center for International Food and Agricultural Policy.
    13. Chebil, A. & Frija, A. & Thabet, C., 2012. "Irrigation water pricing between governmental policies and farmers’ perception: Implications for green-houses horticultural production in Teboulba (Tunisia)," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 11(2), pages 1-11.
    14. de Fraiture, Charlotte & Perry, C. J., 2007. "Why is agricultural water demand unresponsive at low price ranges?," IWMI Books, Reports H040602, International Water Management Institute.
    15. Zeynep Altinay & Eric Rittmeyer & Lauren L. Morris & Margaret A. Reams, 2021. "Public risk salience of sea level rise in Louisiana, United States," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 11(4), pages 523-536, December.
    16. Roe, Terry & Dinar, Ariel & Tsur, Yacov & Diao, Xinshen, 2005. "Feedback links between economy-wide and farm-level policies: With application to irrigation water management in Morocco," Journal of Policy Modeling, Elsevier, vol. 27(8), pages 905-928, November.
    17. White, Robin R. & Brady, Michael, 2014. "Can consumers’ willingness to pay incentivize adoption of environmental impact reducing technologies in meat animal production?," Food Policy, Elsevier, vol. 49(P1), pages 41-49.
    18. Rinaudo, Jean-Daniel & Maton, Laure & Terrason, Isabelle & Chazot, Sébastien & Richard-Ferroudji, Audrey & Caballero, Yvan, 2013. "Combining scenario workshops with modeling to assess future irrigation water demands," Agricultural Water Management, Elsevier, vol. 130(C), pages 103-112.
    19. Lee, Lisa Y. & Ancev, Tihomir & Vervoort, Willem, 2012. "Evaluation of environmental policies targeting irrigated agriculture: The case of the Mooki catchment, Australia," Agricultural Water Management, Elsevier, vol. 109(C), pages 107-116.
    20. Shay-Wei Choon & Hway-Boon Ong & Siow-Hooi Tan, 2019. "Does risk perception limit the climate change mitigation behaviors?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(4), pages 1891-1917, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:900-:d:1024505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.