IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i22p15887-d1279142.html
   My bibliography  Save this article

Recharge Estimation Approach in a Data-Scarce Semi-Arid Region, Northern Ethiopian Rift Valley

Author

Listed:
  • Sisay S. Mekonen

    (Chair of Hydrology and River Basin Management, School of Engineering and Design, Technical University of Munich, 80333 Munich, Germany
    Faculty of Water Resources and Irrigation Engineering, Arba Minch University, Arba Minch P.O. Box 21, Ethiopia)

  • Scott E. Boyce

    (Chair of Hydrology and River Basin Management, School of Engineering and Design, Technical University of Munich, 80333 Munich, Germany
    U.S. Geological Survey, California Water Science Center, 4165 Spruance Rd., Suite 200, San Diego, CA 92101-0812, USA)

  • Abdella K. Mohammed

    (Faculty of Hydraulic and Water Resources Engineering, Arba Minch University, Arba Minch P.O. Box 21, Ethiopia)

  • Lorraine Flint

    (Earth Knowledge Inc., Tucson, AZ 85751-0743, USA)

  • Alan Flint

    (Earth Knowledge Inc., Tucson, AZ 85751-0743, USA)

  • Markus Disse

    (Chair of Hydrology and River Basin Management, School of Engineering and Design, Technical University of Munich, 80333 Munich, Germany)

Abstract

Sustainable management of groundwater resources highly relies on the accurate estimation of recharge. However, accurate recharge estimation is a challenge, especially in data-scarce regions, as the existing models are data-intensive and require extensive parameterization. This study developed a process-based hydrologic model combining local and remotely sensed data for characterizing recharge in data-limited regions using a Basin Characterization Model (BCM). This study was conducted in Raya and Kobo Valleys, a semi-arid region in Northern Ethiopia, considering both the structural basin and the surrounding mountainous recharge areas. Climatic Research Unit monthly datasets for 1991 to 2020 and WaPOR actual evapotranspiration data were used. The model results show that the average annual recharge and surface runoff from 1991 to 2020 were 73 mm and 167 mm, respectively, with a substantial portion contributed along the front of the mountainous parts of the study area. The mountainous recharge occurred along and above the valleys as mountain-block and mountain-front recharge. The long-term estimates of the monthly recharge time series indicated that the water balance components follow the temporal pattern of rainfall amount. However, the relation of recharge to precipitation was nonlinearly related, showing the episodic nature of recharge in semi-arid regions. This study informed the spatial and temporal distribution of recharge and runoff hydrologic variables at fine spatial scales for each grid cell, allowing results to be summarized for various planning units, including farmlands. One third of the precipitation in the drainage basin becomes recharge and runoff, while the remaining is lost through evapotranspiration. The current study’s findings are vital for developing plans for sustainable management of water resources in semi-arid regions. Also, monthly groundwater withdrawals for agriculture should be regulated in relation to spatial and temporal recharge patterns. We conclude that combining scarce local data with global datasets and tools is a useful approach for estimating recharge to manage groundwater resources in data-scarce regions.

Suggested Citation

  • Sisay S. Mekonen & Scott E. Boyce & Abdella K. Mohammed & Lorraine Flint & Alan Flint & Markus Disse, 2023. "Recharge Estimation Approach in a Data-Scarce Semi-Arid Region, Northern Ethiopian Rift Valley," Sustainability, MDPI, vol. 15(22), pages 1-25, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15887-:d:1279142
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/22/15887/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/22/15887/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Delphine Renard & David Tilman, 2019. "National food production stabilized by crop diversity," Nature, Nature, vol. 571(7764), pages 257-260, July.
    2. Belay Z. Abate & Tewodros T. Assefa & Tibebe B. Tigabu & Wubneh B. Abebe & Li He, 2023. "Hydrological Modeling of the Kobo-Golina River in the Data-Scarce Upper Danakil Basin, Ethiopia," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    3. Ahmed Khaled Abdella Ahmed & Mustafa El-Rawy & Amira Mofreh Ibraheem & Nassir Al-Arifi & Mahmoud Khaled Abd-Ellah, 2023. "Forecasting of Groundwater Quality by Using Deep Learning Time Series Techniques in an Arid Region," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong Sheng & Siyuan Jing & Xueqing He & Alexandra-Maria Klein & Heinz-R. Köhler & Thomas C. Wanger, 2024. "Plastic pollution in agricultural landscapes: an overlooked threat to pollination, biocontrol and food security," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Matteo Zampieri & Andrea Toreti & Andrej Ceglar & Pierluca De Palma & Thomas Chatzopoulos, 2020. "Analysing the resilience of the European commodity production system with PyResPro, the Python Production Resilience package," Papers 2006.08976, arXiv.org, revised Jun 2020.
    3. Revoyron, Eva & Le Bail, Marianne & Meynard, Jean-Marc & Gunnarsson, Anita & Seghetti, Marco & Colombo, Luca, 2022. "Diversity and drivers of crop diversification pathways of European farms," Agricultural Systems, Elsevier, vol. 201(C).
    4. Katrin Martens & Sebastian Rogga & Jana Zscheischler & Bernd Pölling & Andreas Obersteg & Annette Piorr, 2022. "Classifying New Hybrid Cooperation Models for Short Food-Supply Chains—Providing a Concept for Assessing Sustainability Transformation in the Urban-Rural Nexus," Land, MDPI, vol. 11(4), pages 1-24, April.
    5. Wei Wang & Xin Luo & Chongmei Zhang & Jiahao Song & Dingde Xu, 2021. "Can Land Transfer Alleviate the Poverty of the Elderly? Evidence from Rural China," IJERPH, MDPI, vol. 18(21), pages 1-15, October.
    6. Philip A. Loring, 2022. "Regenerative food systems and the conservation of change," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 701-713, June.
    7. Hanan Ali Alrteimei & Zulfa Hanan Ash’aari & Farrah Melissa Muharram, 2022. "Last Decade Assessment of the Impacts of Regional Climate Change on Crop Yield Variations in the Mediterranean Region," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    8. Sun, Yong & Miao, Yiling & Xie, Zhiju & Wu, Runtian, 2024. "Drivers and barriers to digital transformation in agriculture: An evolutionary game analysis based on the experience of China," Agricultural Systems, Elsevier, vol. 221(C).
    9. Hirth, Steffen & Drlička, Ivan & Paterson, Matthew & Thomas, Paul W., 2025. "Polycultural food production in temperate woodlands: Multifactorial benefits and political-economic barriers," Land Use Policy, Elsevier, vol. 156(C).
    10. Anubhab Pattanayak & Madhumitha Srinivasan & K. S. Kavi Kumar, 2023. "Crop Diversity and Resilience to Droughts: Evidence from Indian Agriculture," Review of Development and Change, , vol. 28(2), pages 166-188, December.
    11. Oumar Hissein Abba Mahmoud & Oumarou Zango & Naoura Gapili & Maman Laouali Adamou Ibrahim & Abdoulaye Rafiou & Nathalie Chabrillange & Frédérique Aberlenc & Yacoubou Bakasso & Joseph Martin Bell, 2024. "Agrobiodiversity and Sustainability of Oasis Agrosystems in Palm Groves of Sahara and Sahel in Chad," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 14(4), pages 1-99, April.
    12. Yaqian Yan & Haiyang Jin & Fei Zheng & Xiwen Yang & Hang Song & Jiarui Wang & Baoting Fang & Hongjian Cheng & Xiangdong Li & Dexian He, 2025. "Introducing Legumes into Wheat–Maize Rotation Complicates Soil Microbial Co-Occurrence Network and Reduces Soil Allelochemicals in Succeeding Wheat Season," Agriculture, MDPI, vol. 15(12), pages 1-18, June.
    13. Némethová Jana & Vilinová Katarína & Rybanský Ľubomír, 2025. "Regional Differences in Crop Production at the Level of Slovakia’s Districts Between 2004 and 2022," Quaestiones Geographicae, Sciendo, vol. 44(2), pages 33-44.
    14. Makate, Clifton & Angelsen, Arild & Holden, Stein Terje & Westengen, Ola Tveitereid, 2023. "Evolution of farm-level crop diversification and response to rainfall shocks in smallholder farming: Evidence from Malawi and Tanzania," Ecological Economics, Elsevier, vol. 205(C).
    15. Xia, Haiyong & Qiao, Yuetong & Li, Xiaojing & Xue, Yanhui & Wang, Na & Yan, Wei & Xue, Yanfang & Cui, Zhenling & van der Werf, Wopke, 2023. "Moderation of nitrogen input and integration of legumes via intercropping enable sustainable intensification of wheat-maize double cropping in the North China Plain: A four-year rotation study," Agricultural Systems, Elsevier, vol. 204(C).
    16. Yuzhu Zou & Zhenshan Liu & Yan Chen & Yin Wang & Shijing Feng, 2024. "Crop Rotation and Diversification in China: Enhancing Sustainable Agriculture and Resilience," Agriculture, MDPI, vol. 14(9), pages 1-14, August.
    17. Aguilera, Eduardo & Díaz-Gaona, Cipriano & García-Laureano, Raquel & Reyes-Palomo, Carolina & Guzmán, Gloria I. & Ortolani, Livia & Sánchez-Rodríguez, Manuel & Rodríguez-Estévez, Vicente, 2020. "Agroecology for adaptation to climate change and resource depletion in the Mediterranean region. A review," Agricultural Systems, Elsevier, vol. 181(C).
    18. Qiu, Bingwen & Jian, Zeyu & Yang, Peng & Tang, Zhenghong & Zhu, Xiaolin & Duan, Mingjie & Yu, Qiangyi & Chen, Xuehong & Zhang, Miao & Tu, Ping & Xu, Weiming & Zhao, Zhiyuan, 2024. "Unveiling grain production patterns in China (2005–2020) towards targeted sustainable intensification," Agricultural Systems, Elsevier, vol. 216(C).
    19. Makate, Clifton & Angelsen, Arild & Holden, Stein Terje & Westengen, Ola Tveitereid, 2022. "Crops in crises: Shocks shape smallholders' diversification in rural Ethiopia," World Development, Elsevier, vol. 159(C).
    20. Nilsson, Pia & Bommarco, Riccardo & Hansson, Helena & Kuns, Brian & Schaak, Henning, 2022. "Farm performance and input self-sufficiency increases with functional crop diversity on Swedish farms," Ecological Economics, Elsevier, vol. 198(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15887-:d:1279142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.