IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i21p15257-d1266978.html
   My bibliography  Save this article

Offshore Wind Power Resource Assessment in the Gulf of North Suez

Author

Listed:
  • Shafiqur Rehman

    (Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia)

  • Kashif Irshad

    (Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia)

  • Nasiru I. Ibrahim

    (Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia)

  • Ali AlShaikhi

    (Electrical Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia)

  • Mohamed A. Mohandes

    (Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
    Electrical Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia)

Abstract

Growing population, industrialization, and power requirements are adversely affecting the environment through increased greenhouse gases resulting from fossil fuel burning. Global greenhouse gas mitigation targets have led nations to promote clean and self-renewable sources of energy to address this environmental issue. Offshore wind power resources are relatively more attractive due to high winds, less turbulence, minimal visualization effects, and no interaction of infrastructure. The present study aims at conducting an offshore wind power resource assessment (OWPRA) at some locations in the Gulf of North Suez. For this purpose, the long-term hourly mean wind speed (WS) and wind direction above mean sea level (AMSL), as well as temperature and pressure data near the surface, are used. The data is obtained from ERA5 (fifth generation global climate reanalysis) at six (L1–L6) chosen offshore locations. The data covers a period of 43 years, between 1979 and 2021. The WS and direction are provided at 100 m AMSL, while temperature and pressure are available near water-surface level. At the L1 to L6 locations, the log-term mean WS and wind power density (WPD) values are found to be 7.55 m/s and 370 W/m 2 , 6.37 m/s and 225 W/m 2 , 6.91 m/s and 281 W/m 2 , 5.48 m/s and 142 W/m 2 , 4.30 m/s and 77 W/m 2 , and 5.03 and 115 W/m 2 and at 100 m AMSL, respectively. The higher magnitudes of monthly and annual windy site identifier indices (MWSI and AWSI) of 18.68 and 57.41 and 12.70 and 42.94 at the L1 and L3 sites, and generally lower values of wind variability indices, are indicative of a favorable winds source, which is also supported by higher magnitudes of mean WS, WPD, annual energy yields, plant capacity factors, and wind duration at these sites. The cost of energy for the worst and the best cases are estimated as 10.120 USD/kWh and 1.274 USD/kWh at the L5 and L1 sites, corresponding to wind turbines WT1 and WT4. Based on this analysis, sites L1, L3, and L2 are recommended for wind farm development in order of preference. The wind variability and windy site identifier indices introduced will help decision-makers in targeting potential windy sites with more confidence.

Suggested Citation

  • Shafiqur Rehman & Kashif Irshad & Nasiru I. Ibrahim & Ali AlShaikhi & Mohamed A. Mohandes, 2023. "Offshore Wind Power Resource Assessment in the Gulf of North Suez," Sustainability, MDPI, vol. 15(21), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15257-:d:1266978
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/21/15257/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/21/15257/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Study on offshore wind power potential and wind farm optimization in Hong Kong," Applied Energy, Elsevier, vol. 130(C), pages 519-531.
    2. Giovanni Gualtieri, 2021. "Reliability of ERA5 Reanalysis Data for Wind Resource Assessment: A Comparison against Tall Towers," Energies, MDPI, vol. 14(14), pages 1-21, July.
    3. Robertson, Bryson & Dunkle, Gabrielle & Gadasi, Jonah & Garcia-Medina, Gabriel & Yang, Zhaoqing, 2021. "Holistic marine energy resource assessments: A wave and offshore wind perspective of metocean conditions," Renewable Energy, Elsevier, vol. 170(C), pages 286-301.
    4. Nezhad, M. Majidi & Neshat, M. & Groppi, D. & Marzialetti, P. & Heydari, A. & Sylaios, G. & Garcia, D. Astiaso, 2021. "A primary offshore wind farm site assessment using reanalysis data: a case study for Samothraki island," Renewable Energy, Elsevier, vol. 172(C), pages 667-679.
    5. Patxi Garcia-Novo & Daniel Coles & Yusaku Kyozuka & Reiko Yamada & Haruka Moriguchi & Daisaku Sakaguchi, 2023. "Optimization of a Tidal–Wind–Solar System to Enhance Supply–Demand Balancing and Security: A Case Study of the Goto Islands, Japan," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    6. Namki Choi & Beomju Kim & Dohyuk Kim & Bohyun Park & Sangsoo Kim & Byongjun Lee, 2022. "Grid Connection Studies for Large-Scale Offshore Wind Farms Considering High Penetration of Regional Renewables," Sustainability, MDPI, vol. 14(2), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akintayo T. Abolude & Wen Zhou, 2018. "A Comparative Computational Fluid Dynamic Study on the Effects of Terrain Type on Hub-Height Wind Aerodynamic Properties," Energies, MDPI, vol. 12(1), pages 1-14, December.
    2. Ruixiaoxiao Zhang & Geoffrey QP Shen & Meng Ni & Johnny Wong, 2020. "The relationship between energy consumption and gross domestic product in Hong Kong (1992–2015): Evidence from sectoral analysis and implications on future energy policy," Energy & Environment, , vol. 31(2), pages 215-236, March.
    3. Pollini, Nicolò, 2022. "Topology optimization of wind farm layouts," Renewable Energy, Elsevier, vol. 195(C), pages 1015-1027.
    4. Mahsa Dehghan Manshadi & Milad Mousavi & M. Soltani & Amir Mosavi & Levente Kovacs, 2022. "Deep Learning for Modeling an Offshore Hybrid Wind–Wave Energy System," Energies, MDPI, vol. 15(24), pages 1-16, December.
    5. Zhu, Xiaoxun & Liu, Ruizhang & Chen, Yao & Gao, Xiaoxia & Wang, Yu & Xu, Zixu, 2021. "Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN," Energy, Elsevier, vol. 236(C).
    6. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Characterization of wind resource in China from a new perspective," Energy, Elsevier, vol. 167(C), pages 994-1010.
    7. Gao, Xiaoxia & Chen, Yao & Xu, Shinai & Gao, Wei & Zhu, Xiaoxun & Sun, Haiying & Yang, Hongxing & Han, Zhonghe & Wang, Yu & Lu, Hao, 2022. "Comparative experimental investigation into wake characteristics of turbines in three wind farms areas with varying terrain complexity from LiDAR measurements," Applied Energy, Elsevier, vol. 307(C).
    8. Jing Xu & Ren Zhang & Yangjun Wang & Hengqian Yan & Quanhong Liu & Yutong Guo & Yongcun Ren, 2022. "A New Framework for Assessment of Offshore Wind Farm Location," Energies, MDPI, vol. 15(18), pages 1-17, September.
    9. Piotr Kułyk & Łukasz Augustowski, 2021. "Economic Profitability of a Hybrid Approach to Powering Residual Households from Natural Sources in Two Wind Zones of the Lubuskie Voivodeship in Poland," Energies, MDPI, vol. 14(21), pages 1-15, October.
    10. Sun, Haiying & Yang, Hongxing, 2020. "Numerical investigation of the average wind speed of a single wind turbine and development of a novel three-dimensional multiple wind turbine wake model," Renewable Energy, Elsevier, vol. 147(P1), pages 192-203.
    11. Shakoor, Rabia & Hassan, Mohammad Yusri & Raheem, Abdur & Rasheed, Nadia, 2016. "Wind farm layout optimization using area dimensions and definite point selection techniques," Renewable Energy, Elsevier, vol. 88(C), pages 154-163.
    12. Sun, Chuan & Chen, Yueyi & Cheng, Cheng, 2021. "Imputation of missing data from offshore wind farms using spatio-temporal correlation and feature correlation," Energy, Elsevier, vol. 229(C).
    13. Guirguis, David & Romero, David A. & Amon, Cristina H., 2017. "Gradient-based multidisciplinary design of wind farms with continuous-variable formulations," Applied Energy, Elsevier, vol. 197(C), pages 279-291.
    14. Gangopadhyay, A. & Seshadri, A.K. & Sparks, N.J. & Toumi, R., 2022. "The role of wind-solar hybrid plants in mitigating renewable energy-droughts," Renewable Energy, Elsevier, vol. 194(C), pages 926-937.
    15. Geovanni Hernández Galvez & Daniel Chuck Liévano & Omar Sarracino Martínez & Orlando Lastres Danguillecourt & José Rafael Dorrego Portela & Antonio Trujillo Narcía & Ricardo Saldaña Flores & Liliana P, 2022. "Harnessing Offshore Wind Energy along the Mexican Coastline in the Gulf of Mexico—An Exploratory Study including Sustainability Criteria," Sustainability, MDPI, vol. 14(10), pages 1-26, May.
    16. Nie, Bingchuan & Li, Jiachun, 2018. "Technical potential assessment of offshore wind energy over shallow continent shelf along China coast," Renewable Energy, Elsevier, vol. 128(PA), pages 391-399.
    17. Feng, Ju & Shen, Wen Zhong, 2017. "Design optimization of offshore wind farms with multiple types of wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 1283-1297.
    18. Aotian Song & Lin Lu & Zhizhao Liu & Man Sing Wong, 2016. "A Study of Incentive Policies for Building-Integrated Photovoltaic Technology in Hong Kong," Sustainability, MDPI, vol. 8(8), pages 1-21, August.
    19. Akdemir, Kerem Ziya & Robertson, Bryson & Oikonomou, Konstantinos & Kern, Jordan & Voisin, Nathalie & Hanif, Sarmad & Bhattacharya, Saptarshi, 2023. "Opportunities for wave energy in bulk power system operations," Applied Energy, Elsevier, vol. 352(C).
    20. Superchi, Francesco & Papi, Francesco & Mannelli, Andrea & Balduzzi, Francesco & Ferro, Francesco Maria & Bianchini, Alessandro, 2023. "Development of a reliable simulation framework for techno-economic analyses on green hydrogen production from wind farms using alkaline electrolyzers," Renewable Energy, Elsevier, vol. 207(C), pages 731-742.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15257-:d:1266978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.