IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224035369.html
   My bibliography  Save this article

Region-partitioned obstacle avoidance strategy for large-scale offshore wind farm collection system considering buffer zone

Author

Listed:
  • Zhang, Xiaoshun
  • Li, Jincheng
  • Guo, Zhengxun

Abstract

For a wind farm, the collection system can directly influence the investment cost, the connected number of wind turbines, and the operation reliability. In general, it is difficult to generate a high-quality design solution for the collection system when considering various constraints (e.g., bypassing the obstacle zone), especially for a large-scale wind farm with numerous wind turbines. To address this complex and challenging issue, a region-partitioned obstacle avoidance strategy for large-scale offshore wind farm collection systems (OWFCS) considering buffer zones is innovatively presented. Firstly, the optimization model for OWFCS is formulated to minimize both cable investment and construction costs. A buffer zone with several buffer points is originally constructed, upon which the obstacle zone can be bypassed via connecting with buffer points instead of the inner points of the obstacle zone. Subsequently, a radial fuzzy C-means (RFCM) based region-partitioned clustering strategy for OWFCS is developed to narrow the solution space, thus reducing the complexity and difficulty of optimization. Furthermore, an automated submarine cable selection method named obstacle spanning tree (OST) is presented and integrated into a firefly algorithm (FA) to seek the optimal collector system topology. Finally, the case studies validate that the proposed method is effective in optimizing OWFCS topology with both single and multiple obstacle zones. Compared with other approaches, the proposed method demonstrated advantages in terms of stability and cost optimization effectiveness for OWFCS with obstacle zones after 10 independent runs.

Suggested Citation

  • Zhang, Xiaoshun & Li, Jincheng & Guo, Zhengxun, 2024. "Region-partitioned obstacle avoidance strategy for large-scale offshore wind farm collection system considering buffer zone," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035369
    DOI: 10.1016/j.energy.2024.133758
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224035369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133758?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Dongran & Yan, Jiaqi & Gao, Yang & Wang, Lei & Du, Xin & Xu, Zhiliang & Zhang, Zhihong & Yang, Jian & Dong, Mi & Chen, Yang, 2023. "Optimization of floating wind farm power collection system using a novel two-layer hybrid method," Applied Energy, Elsevier, vol. 348(C).
    2. Gao, Qiang & Hayward, Jennifer A. & Sergiienko, Nataliia & Khan, Salman Saeed & Hemer, Mark & Ertugrul, Nesimi & Ding, Boyin, 2024. "Detailed mapping of technical capacities and economics potential of offshore wind energy: A case study in South-eastern Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Hou, Peng & Hu, Weihao & Soltani, Mohsen & Chen, Cong & Chen, Zhe, 2017. "Combined optimization for offshore wind turbine micro siting," Applied Energy, Elsevier, vol. 189(C), pages 271-282.
    4. Zhang, Zhihao & Yang, Haoran & Zhao, Yongsheng & Han, Zhaolong & Zhou, Dai & Zhang, Jianhua & Tu, Jiahuang & Chen, Mingsheng, 2024. "A novel wake control strategy for a twin-rotor floating wind turbine: Mitigating wake effect," Energy, Elsevier, vol. 287(C).
    5. Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).
    6. Jin, Rongsen & Hou, Peng & Yang, Guangya & Qi, Yuanhang & Chen, Cong & Chen, Zhe, 2019. "Cable routing optimization for offshore wind power plants via wind scenarios considering power loss cost model," Applied Energy, Elsevier, vol. 254(C).
    7. Nezhad, M. Majidi & Neshat, M. & Groppi, D. & Marzialetti, P. & Heydari, A. & Sylaios, G. & Garcia, D. Astiaso, 2021. "A primary offshore wind farm site assessment using reanalysis data: a case study for Samothraki island," Renewable Energy, Elsevier, vol. 172(C), pages 667-679.
    8. Magnus Daniel Kallinger & José Ignacio Rapha & Pau Trubat Casal & José Luis Domínguez-García, 2023. "Offshore Electrical Grid Layout Optimization for Floating Wind—A Review," Clean Technol., MDPI, vol. 5(3), pages 1-37, June.
    9. Cazzaro, Davide & Fischetti, Martina & Fischetti, Matteo, 2020. "Heuristic algorithms for the Wind Farm Cable Routing problem," Applied Energy, Elsevier, vol. 278(C).
    10. Serrano González, Javier & Trigo García, Ángel Luis & Burgos Payán, Manuel & Riquelme Santos, Jesús & González Rodríguez, Ángel Gaspar, 2017. "Optimal wind-turbine micro-siting of offshore wind farms: A grid-like layout approach," Applied Energy, Elsevier, vol. 200(C), pages 28-38.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magnus Daniel Kallinger & José Ignacio Rapha & Pau Trubat Casal & José Luis Domínguez-García, 2023. "Offshore Electrical Grid Layout Optimization for Floating Wind—A Review," Clean Technol., MDPI, vol. 5(3), pages 1-37, June.
    2. Wu, Yan & Xia, Tianqi & Wang, Yufei & Zhang, Haoran & Feng, Xiao & Song, Xuan & Shibasaki, Ryosuke, 2022. "A synchronization methodology for 3D offshore wind farm layout optimization with multi-type wind turbines and obstacle-avoiding cable network," Renewable Energy, Elsevier, vol. 185(C), pages 302-320.
    3. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
    4. Feng, Ju & Shen, Wen Zhong, 2017. "Design optimization of offshore wind farms with multiple types of wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 1283-1297.
    5. Pérez-Rúa, Juan-Andrés & Lund, Rasmus Sode & Verelst, David Robert & Abrahamsen, Asger Bech & Dykes, Katherine, 2024. "Exact optimization of inter-array dynamic cable networks for Floating Offshore Wind Farms," Renewable Energy, Elsevier, vol. 237(PB).
    6. Jin, Rongsen & Hou, Peng & Yang, Guangya & Qi, Yuanhang & Chen, Cong & Chen, Zhe, 2019. "Cable routing optimization for offshore wind power plants via wind scenarios considering power loss cost model," Applied Energy, Elsevier, vol. 254(C).
    7. Wang, Xuefei & Zeng, Xiangwu & Yang, Xu & Li, Jiale, 2018. "Feasibility study of offshore wind turbines with hybrid monopile foundation based on centrifuge modeling," Applied Energy, Elsevier, vol. 209(C), pages 127-139.
    8. Butterwick, Thomas & Kheiri, Ahmed & Lulli, Guglielmo & Gromicho, Joaquim & Kreeft, Jasper, 2023. "Application of selection hyper-heuristics to the simultaneous optimisation of turbines and cabling within an offshore windfarm," Renewable Energy, Elsevier, vol. 208(C), pages 1-16.
    9. Yuanhang Qi & Peng Hou & Guisong Liu & Rongsen Jin & Zhile Yang & Guangya Yang & Zhaoyang Dong, 2021. "Cable Connection Optimization for Heterogeneous Offshore Wind Farms via a Voronoi Diagram Based Adaptive Particle Swarm Optimization with Local Search," Energies, MDPI, vol. 14(3), pages 1-21, January.
    10. Wu, Xiawei & Hu, Weihao & Huang, Qi & Chen, Cong & Jacobson, Mark Z. & Chen, Zhe, 2020. "Optimizing the layout of onshore wind farms to minimize noise," Applied Energy, Elsevier, vol. 267(C).
    11. Martina Fischetti & Matteo Fischetti, 2023. "Integrated Layout and Cable Routing in Wind Farm Optimal Design," Management Science, INFORMS, vol. 69(4), pages 2147-2164, April.
    12. Song, Dongran & Yan, Jiaqi & Gao, Yang & Wang, Lei & Du, Xin & Xu, Zhiliang & Zhang, Zhihong & Yang, Jian & Dong, Mi & Chen, Yang, 2023. "Optimization of floating wind farm power collection system using a novel two-layer hybrid method," Applied Energy, Elsevier, vol. 348(C).
    13. Tiago A. Antunes & Rui Castro & Paulo J. Santos & Armando J. Pires, 2023. "Power-from-Shore Optioneering for Integration of Offshore Renewable Energy in Oil and Gas Production," Energies, MDPI, vol. 17(1), pages 1-23, December.
    14. Long Wang & Jianghai Wu & Zeling Tang & Tongguang Wang, 2019. "An Integration Optimization Method for Power Collection Systems of Offshore Wind Farms," Energies, MDPI, vol. 12(20), pages 1-16, October.
    15. Díaz, H. & Silva, D. & Bernardo, C. & Guedes Soares, C., 2023. "Micro sitting of floating wind turbines in a wind farm using a multi-criteria framework," Renewable Energy, Elsevier, vol. 204(C), pages 449-474.
    16. Hou, Peng & Enevoldsen, Peter & Hu, Weihao & Chen, Cong & Chen, Zhe, 2017. "Offshore wind farm repowering optimization," Applied Energy, Elsevier, vol. 208(C), pages 834-844.
    17. Tao, Siyu & Jiang, Fuqing, 2024. "Offshore grid planning considering restricted areas: An evolution game approach," Renewable Energy, Elsevier, vol. 237(PA).
    18. Serrano González, Javier & Burgos Payán, Manuel & Riquelme Santos, Jesús Manuel, 2018. "Optimal design of neighbouring offshore wind farms: A co-evolutionary approach," Applied Energy, Elsevier, vol. 209(C), pages 140-152.
    19. Reddy, Sohail R., 2021. "A machine learning approach for modeling irregular regions with multiple owners in wind farm layout design," Energy, Elsevier, vol. 220(C).
    20. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.