IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipas0960148124016240.html
   My bibliography  Save this article

Offshore grid planning considering restricted areas: An evolution game approach

Author

Listed:
  • Tao, Siyu
  • Jiang, Fuqing

Abstract

In this paper, offshore wind farm cluster transmission network planning is examined in depth, based on the finite rational evolutionary game method. In the actual project, the game scenarios of offshore wind farm developers and transmission system operators and their respective interests are considered, while cable laying exclusion zones owing to the submarine environment are fully taken into account. Through simulation experiments, the significant effect of the proposed method in improving grid adaptability and interference immunity is verified. The results demonstrate that the proposed finite rational evolutionary game method increases the return on investment by 1.83 % compared to the traditional method, while the payoff ratio of the game participants is 12.81 % lower. In addition, the method excels in ensuring the feasibility of project implementation by successfully balancing the interests between the OWF developer and the power transmission system operator. This offers a new perspective for efficient planning of transmission networks for offshore wind farms that can better cope with complex engineering environments and balance the interests of all parties.

Suggested Citation

  • Tao, Siyu & Jiang, Fuqing, 2024. "Offshore grid planning considering restricted areas: An evolution game approach," Renewable Energy, Elsevier, vol. 237(PA).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016240
    DOI: 10.1016/j.renene.2024.121556
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124016240
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121556?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Dongran & Yan, Jiaqi & Gao, Yang & Wang, Lei & Du, Xin & Xu, Zhiliang & Zhang, Zhihong & Yang, Jian & Dong, Mi & Chen, Yang, 2023. "Optimization of floating wind farm power collection system using a novel two-layer hybrid method," Applied Energy, Elsevier, vol. 348(C).
    2. Aguayo, Maichel M. & Fierro, Pablo E. & De la Fuente, Rodrigo A. & Sepúlveda, Ignacio A. & Figueroa, Dante M., 2021. "A mixed-integer programming methodology to design tidal current farms integrating both cost and benefits: A case study in the Chacao Channel, Chile," Applied Energy, Elsevier, vol. 294(C).
    3. Smita Shandilya & Zdzislaw Szymanski & Shishir Kumar Shandilya & Ivan Izonin & Krishna Kant Singh, 2022. "Modeling and Comparative Analysis of Multi-Agent Cost Allocation Strategies Using Cooperative Game Theory for the Modern Electricity Market," Energies, MDPI, vol. 15(7), pages 1-14, March.
    4. Smail, Houria & Alkama, Rezak & Medjdoub, Abdellah, 2018. "Optimal design of the electric connection of a wind farm," Energy, Elsevier, vol. 165(PB), pages 972-983.
    5. Liu, Yang & Fu, Yang & Huang, Ling-ling & Ren, Zi-xu & Jia, Feng, 2022. "Optimization of offshore grid planning considering onshore network expansions," Renewable Energy, Elsevier, vol. 181(C), pages 91-104.
    6. Hou, Peng & Hu, Weihao & Chen, Cong & Soltani, Mohsen & Chen, Zhe, 2016. "Optimization of offshore wind farm layout in restricted zones," Energy, Elsevier, vol. 113(C), pages 487-496.
    7. Larry Samuelson, 2002. "Evolution and Game Theory," Journal of Economic Perspectives, American Economic Association, vol. 16(2), pages 47-66, Spring.
    8. Uti, Mat Nizam & Md Din, Ami Hassan & Yusof, Norhakim & Yaakob, Omar, 2023. "A spatial-temporal clustering for low ocean renewable energy resources using K-means clustering," Renewable Energy, Elsevier, vol. 219(P2).
    9. Wang, Long & Wu, Jianghai & Wang, Tongguang & Han, Ran, 2020. "An optimization method based on random fork tree coding for the electrical networks of offshore wind farms," Renewable Energy, Elsevier, vol. 147(P1), pages 1340-1351.
    10. Hou, Peng & Enevoldsen, Peter & Hu, Weihao & Chen, Cong & Chen, Zhe, 2017. "Offshore wind farm repowering optimization," Applied Energy, Elsevier, vol. 208(C), pages 834-844.
    11. Cazzaro, Davide & Fischetti, Martina & Fischetti, Matteo, 2020. "Heuristic algorithms for the Wind Farm Cable Routing problem," Applied Energy, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao, Siyu, 2025. "An investment game model for offshore power grid multi-stage expansion planning," Renewable Energy, Elsevier, vol. 238(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaoshun & Li, Jincheng & Guo, Zhengxun, 2024. "Region-partitioned obstacle avoidance strategy for large-scale offshore wind farm collection system considering buffer zone," Energy, Elsevier, vol. 313(C).
    2. Magnus Daniel Kallinger & José Ignacio Rapha & Pau Trubat Casal & José Luis Domínguez-García, 2023. "Offshore Electrical Grid Layout Optimization for Floating Wind—A Review," Clean Technol., MDPI, vol. 5(3), pages 1-37, June.
    3. Aguayo, Maichel M. & Fierro, Pablo E. & De la Fuente, Rodrigo A. & Sepúlveda, Ignacio A. & Figueroa, Dante M., 2021. "A mixed-integer programming methodology to design tidal current farms integrating both cost and benefits: A case study in the Chacao Channel, Chile," Applied Energy, Elsevier, vol. 294(C).
    4. Song, Dongran & Yan, Jiaqi & Gao, Yang & Wang, Lei & Du, Xin & Xu, Zhiliang & Zhang, Zhihong & Yang, Jian & Dong, Mi & Chen, Yang, 2023. "Optimization of floating wind farm power collection system using a novel two-layer hybrid method," Applied Energy, Elsevier, vol. 348(C).
    5. Tao, Siyu, 2025. "An investment game model for offshore power grid multi-stage expansion planning," Renewable Energy, Elsevier, vol. 238(C).
    6. Joan Luft & Michael Shields, 2002. "Zimmerman's contentious conjectures: describing the present and prescribing the future of empirical management accounting research," European Accounting Review, Taylor & Francis Journals, vol. 11(4), pages 795-803.
    7. Alberto Locarno, 2012. "Monetary policy in a model with misspecified, heterogeneous and ever-changing expectations," Temi di discussione (Economic working papers) 888, Bank of Italy, Economic Research and International Relations Area.
    8. Michael Foley & Rory Smead & Patrick Forber & Christoph Riedl, 2021. "Avoiding the bullies: The resilience of cooperation among unequals," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-19, April.
    9. Ma, Hongliang & Ge, Mingwei & Wu, Guangxing & Du, Bowen & Liu, Yongqian, 2021. "Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production," Applied Energy, Elsevier, vol. 303(C).
    10. Yi Shi & Yan Li, 2022. "An Evolutionary Game Analysis on Green Technological Innovation of New Energy Enterprises under the Heterogeneous Environmental Regulation Perspective," Sustainability, MDPI, vol. 14(10), pages 1-26, May.
    11. Zhao, Rui & Zhou, Xiao & Han, Jiaojie & Liu, Chengliang, 2016. "For the sustainable performance of the carbon reduction labeling policies under an evolutionary game simulation," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 262-274.
    12. Wu, Baigong & Zhan, Mingjing & Wu, Rujian & Zhang, Xiao, 2023. "The investigation of a coaxial twin-counter-rotating turbine with variable-pitch adaptive blades," Energy, Elsevier, vol. 267(C).
    13. Wang, Bangyan & Wang, Xiuli & Wei, Fengting & Shao, Chengcheng & Zhou, Jiahao & Lin, Jintian, 2023. "Multi-stage stochastic planning for a long-term low-carbon transition of island power system considering carbon price uncertainty and offshore wind power," Energy, Elsevier, vol. 282(C).
    14. Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
    15. Miao, Shuwei & Yang, Hejun & Gu, Yingzhong, 2018. "A wind vector simulation model and its application to adequacy assessment," Energy, Elsevier, vol. 148(C), pages 324-340.
    16. Alexis Anagnostopoulos & Omar Licandro & Italo Bove & Karl Schlag, 2007. "An Evolutionary Theory of Inflation Inertia," Journal of the European Economic Association, MIT Press, vol. 5(2-3), pages 433-443, 04-05.
    17. repec:osf:socarx:ymzrd_v1 is not listed on IDEAS
    18. Wang, Xuefei & Zeng, Xiangwu & Yang, Xu & Li, Jiale, 2019. "Seismic response of offshore wind turbine with hybrid monopile foundation based on centrifuge modelling," Applied Energy, Elsevier, vol. 235(C), pages 1335-1350.
    19. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    20. Nguyen, Thi Anh Tuyet & Chou, Shuo-Yan, 2018. "Impact of government subsidies on economic feasibility of offshore wind system: Implications for Taiwan energy policies," Applied Energy, Elsevier, vol. 217(C), pages 336-345.
    21. Wu, Xiawei & Hu, Weihao & Huang, Qi & Chen, Cong & Jacobson, Mark Z. & Chen, Zhe, 2020. "Optimizing the layout of onshore wind farms to minimize noise," Applied Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.