IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v238y2025ics0960148124020068.html
   My bibliography  Save this article

An investment game model for offshore power grid multi-stage expansion planning

Author

Listed:
  • Tao, Siyu

Abstract

The offshore power grid (OPG) which connects multiple neighboring coastal countries is an effective solution to collect and deliver electricity generated by offshore wind farms (OWFs). The transmission network investment decision of the OPG expansion tends to be decentralized where individual stakeholder's strategies are interactive. This paper proposes a two-stage game model to tackle the conflict between the minimum expenditure and the maximum profit of each investor. In the first stage, a cooperative game model is formulated where the players are the OWF investors and the strategies are the connection typologies. The cost of the High Voltage Alternating Current (HVAC) transmission system and the offshore hubs is to be minimized and allocated to each player according to the Shapley value method. In the second stage, a non-cooperative game model is proposed where the players are the coastal countries, represented by onshore nodes and the strategies are the topology of the High Voltage Direct Current (HVDC) transmission system connecting the onshore nodes and the OWFs/offshore nodes. The net present value (NPV) ratio of each player is to be maximized and the Nash equilibrium (NE) is found in different modes. The case study on an OPG with three onshore nodes and two OWFs verifies the effectiveness of the proposed model.

Suggested Citation

  • Tao, Siyu, 2025. "An investment game model for offshore power grid multi-stage expansion planning," Renewable Energy, Elsevier, vol. 238(C).
  • Handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124020068
    DOI: 10.1016/j.renene.2024.121938
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124020068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121938?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodrigues, S. & Restrepo, C. & Kontos, E. & Teixeira Pinto, R. & Bauer, P., 2015. "Trends of offshore wind projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1114-1135.
    2. Smail, Houria & Alkama, Rezak & Medjdoub, Abdellah, 2018. "Optimal design of the electric connection of a wind farm," Energy, Elsevier, vol. 165(PB), pages 972-983.
    3. Gorenstein Dedecca, João & Hakvoort, Rudi A. & Herder, Paulien M., 2017. "Transmission expansion simulation for the European Northern Seas offshore grid," Energy, Elsevier, vol. 125(C), pages 805-824.
    4. Konstantelos, Ioannis & Pudjianto, Danny & Strbac, Goran & De Decker, Jan & Joseph, Pieter & Flament, Aurore & Kreutzkamp, Paul & Genoese, Fabio & Rehfeldt, Leif & Wallasch, Anna-Kathrin & Gerdes, Ger, 2017. "Integrated North Sea grids: The costs, the benefits and their distribution between countries," Energy Policy, Elsevier, vol. 101(C), pages 28-41.
    5. Liu, Yang & Fu, Yang & Huang, Ling-ling & Ren, Zi-xu & Jia, Feng, 2022. "Optimization of offshore grid planning considering onshore network expansions," Renewable Energy, Elsevier, vol. 181(C), pages 91-104.
    6. Konstantelos, Ioannis & Moreno, Rodrigo & Strbac, Goran, 2017. "Coordination and uncertainty in strategic network investment: Case on the North Seas Grid," Energy Economics, Elsevier, vol. 64(C), pages 131-148.
    7. Gea-Bermúdez, Juan & Pade, Lise-Lotte & Koivisto, Matti Juhani & Ravn, Hans, 2020. "Optimal generation and transmission development of the North Sea region: Impact of grid architecture and planning horizon," Energy, Elsevier, vol. 191(C).
    8. Tao, Siyu & Jiang, Fuqing, 2024. "Offshore grid planning considering restricted areas: An evolution game approach," Renewable Energy, Elsevier, vol. 237(PA).
    9. Gorenstein Dedecca, João & Lumbreras, Sara & Ramos, Andrés & Hakvoort, Rudi A. & Herder, Paulien M., 2018. "Expansion planning of the North Sea offshore grid: Simulation of integrated governance constraints," Energy Economics, Elsevier, vol. 72(C), pages 376-392.
    10. Gorenstein Dedecca, João & Hakvoort, Rudi A., 2016. "A review of the North Seas offshore grid modeling: Current and future research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 129-143.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peecock, Anna & Huang, Jiangyi & Martinez-Felipe, Alfonso & McKenna, Russell, 2025. "Reviewing sector coupling in offshore energy system integration modelling: the North Sea context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    2. Martínez-Gordón, R. & Morales-España, G. & Sijm, J. & Faaij, A.P.C., 2021. "A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Gea-Bermúdez, Juan & Pade, Lise-Lotte & Koivisto, Matti Juhani & Ravn, Hans, 2020. "Optimal generation and transmission development of the North Sea region: Impact of grid architecture and planning horizon," Energy, Elsevier, vol. 191(C).
    4. Lüth, Alexandra & Keles, Dogan, 2024. "Risks, strategies, and benefits of offshore energy hubs: A literature-based survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    5. Gorenstein Dedecca, João & Lumbreras, Sara & Ramos, Andrés & Hakvoort, Rudi A. & Herder, Paulien M., 2018. "Expansion planning of the North Sea offshore grid: Simulation of integrated governance constraints," Energy Economics, Elsevier, vol. 72(C), pages 376-392.
    6. Sunila, Kanerva & Bergaentzlé, Claire & Martin, Bénédicte & Ekroos, Ari, 2019. "A supra-national TSO to enhance offshore wind power development in the Baltic Sea? A legal and regulatory analysis," Energy Policy, Elsevier, vol. 128(C), pages 775-782.
    7. Tosatto, Andrea & Beseler, Xavier Martínez & Østergaard, Jacob & Pinson, Pierre & Chatzivasileiadis, Spyros, 2022. "North Sea Energy Islands: Impact on national markets and grids," Energy Policy, Elsevier, vol. 167(C).
    8. Jåstad, Eirik Ogner & Bolkesjø, Torjus Folsland, 2023. "Offshore wind power market values in the North Sea – A probabilistic approach," Energy, Elsevier, vol. 267(C).
    9. Qu, Chunzi & Bang, Rasmus Noss, 2024. "European Grid Development Modeling and Analysis: Established Frameworks, Research Trends, and Future Opportunities," Discussion Papers 2024/11, Norwegian School of Economics, Department of Business and Management Science.
    10. Gorenstein Dedecca, João & Hakvoort, Rudi A. & Herder, Paulien M., 2017. "Transmission expansion simulation for the European Northern Seas offshore grid," Energy, Elsevier, vol. 125(C), pages 805-824.
    11. Lüth, Alexandra & Seifert, Paul E. & Egging-Bratseth, Ruud & Weibezahn, Jens, 2023. "How to connect energy islands: Trade-offs between hydrogen and electricity infrastructure," Applied Energy, Elsevier, vol. 341(C).
    12. Zakeri, Behnam & Price, James & Zeyringer, Marianne & Keppo, Ilkka & Mathiesen, Brian Vad & Syri, Sanna, 2018. "The direct interconnection of the UK and Nordic power market – Impact on social welfare and renewable energy integration," Energy, Elsevier, vol. 162(C), pages 1193-1204.
    13. Jan F. Wiegner & Madeleine Gibescu & Matteo Gazzani, 2024. "Unleashing the full potential of the North Sea -- Identifying key energy infrastructure synergies for 2030 and 2040," Papers 2411.00540, arXiv.org.
    14. Churkin, Andrey & Bialek, Janusz & Pozo, David & Sauma, Enzo & Korgin, Nikolay, 2021. "Review of Cooperative Game Theory applications in power system expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Gea-Bermúdez, Juan & Bramstoft, Rasmus & Koivisto, Matti & Kitzing, Lena & Ramos, Andrés, 2023. "Going offshore or not: Where to generate hydrogen in future integrated energy systems?," Energy Policy, Elsevier, vol. 174(C).
    16. Abadie, Luis María & Chamorro, José Manuel, 2021. "Evaluation of a cross-border electricity interconnection: The case of Spain-France," Energy, Elsevier, vol. 233(C).
    17. Wang, Bangyan & Wang, Xiuli & Wei, Fengting & Shao, Chengcheng & Zhou, Jiahao & Lin, Jintian, 2023. "Multi-stage stochastic planning for a long-term low-carbon transition of island power system considering carbon price uncertainty and offshore wind power," Energy, Elsevier, vol. 282(C).
    18. Glaum, Philipp & Neumann, Fabian & Brown, Tom, 2024. "Offshore power and hydrogen networks for Europe’s North Sea," Applied Energy, Elsevier, vol. 369(C).
    19. Martin Kristiansen & Magnus Korpås & Hossein Farahmand, 2018. "Towards a fully integrated North Sea offshore grid: An engineering‐economic assessment of a power link island," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(4), July.
    20. Tao, Siyu & Jiang, Fuqing, 2024. "Offshore grid planning considering restricted areas: An evolution game approach," Renewable Energy, Elsevier, vol. 237(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124020068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.